Stimulation of phosphorylcholine turnover and diacylglycerol production in human polymorphonuclear leukocytes. Novel assay for phosphorylcholine.

Journal Article (Journal Article)

Receptor-bypassing stimulants of human polymorphonuclear leukocytes (PMNLs), such as ionomycin or phorbol 12-myristate 13-acetate (PMA), generate an increase in diacylglycerol (DAG) which is independent of a phospholipase C specific for phosphatidylinositol 4,5,-bisphosphate (PIP2). Activation of a phospholipase C specific for phosphatidylcholine (PC) has been implicated as a source of DAG in other cells by measuring the release of radiolabelled phosphorylcholine. However, since PMNLs could not be labelled sufficiently with [3H]choline, we developed an h.p.l.c. assay to quantify mass levels of phosphorylcholine after enzymic conversion to [32P]CDP-choline with CTP-phosphorylcholine (choline phosphate) cytidylyltransferase (EC This assay was linear to at least 20 nmol, and was sensitive to 10 pmol of phosphorylcholine. Baseline phosphorylcholine levels in unstimulated PMNLs were 2300 +/- 510 pmol/10(7) cells and were decreased by pretreatment with PMA (166 nM) or ionomycin (1 microM) for 10 min by 360 +/- 130 and 600 +/- 290 pmol/10(7) cells respectively (P less than 0.05). In contrast, baseline DAG levels were 147.6 +/- 11.7 pmol/10(7) cells in unstimulated PMNLs, and were increased by PMA or ionomycin by 1320 +/- 222 and 1891 +/- 264 pmol/10(7) cells respectively (P less than 0.05). Similarly, the chemoattractant fMet-Leu-Phe raised DAG levels by 731 +/- 111 pmol/10(7) cells and decreased phosphorylcholine levels by 180 +/- 60 pmol/10(7) cells. Activation of PMNLs by PMA, ionophore or fMet-Leu-Phe thus leads to the sustained production of DAG accompanied by the disappearance of phosphorylcholine. This suggests that these stimulants enhance PC turnover via a hydrolytic mechanism which is independent of phospholipase C, with activation of a PC-specific phospholipase D being a plausible mechanism.

Full Text

Duke Authors

Cited Authors

  • Truett, AP; Snyderman, R; Murray, JJ

Published Date

  • June 15, 1989

Published In

Volume / Issue

  • 260 / 3

Start / End Page

  • 909 - 913

PubMed ID

  • 2764912

Pubmed Central ID

  • PMC1138762

International Standard Serial Number (ISSN)

  • 0264-6021

Digital Object Identifier (DOI)

  • 10.1042/bj2600909


  • eng

Conference Location

  • England