A Fourier-series-based kernel-independent fast multipole method

Published

Journal Article

We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency. © 2011 Elsevier Inc.

Full Text

Duke Authors

Cited Authors

  • Zhang, B; Huang, J; Pitsianis, NP; Sun, X

Published Date

  • July 1, 2011

Published In

Volume / Issue

  • 230 / 15

Start / End Page

  • 5807 - 5821

Electronic International Standard Serial Number (EISSN)

  • 1090-2716

International Standard Serial Number (ISSN)

  • 0021-9991

Digital Object Identifier (DOI)

  • 10.1016/j.jcp.2011.03.049

Citation Source

  • Scopus