Skip to main content

Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.

Publication ,  Journal Article
King, KY; Baldridge, MT; Weksberg, DC; Chambers, SM; Lukov, GL; Wu, S; Boles, NC; Jung, SY; Qin, J; Liu, D; Songyang, Z; Eissa, NT ...
Published in: Blood
August 11, 2011

The IFN-inducible immunity-related p47 GTPase Irgm1 has been linked to Crohn disease as well as susceptibility to tuberculosis. Previously we demonstrated that HSC quiescence and function are aberrant in mice lacking Irgm1. To investigate the molecular basis for these defects, we conducted microarray expression profiling of Irgm1-deficient HSCs. Cell-cycle and IFN-response genes are up-regulated in Irgm1(-/-) HSCs, consistent with dysregulated IFN signaling. To test the hypothesis that Irgm1 normally down-regulates IFN signaling in HSCs, we generated Irgm1(-/-)Ifngr1(-/-) and Irgm1(-/-)Stat1(-/-) double-knockout animals. Strikingly, hyperproliferation, self-renewal, and autophagy defects in Irgm1(-/-) HSCs were normalized in double-knockout animals. These defects were also abolished in Irgm1(-/-)Irgm3(-/-) double-knockout animals, indicating that Irgm1 may regulate Irgm3 activity. Furthermore, the number of HSCs was reduced in aged Irgm1(-/-) animals, suggesting that negative feedback inhibition of IFN signaling by Irgm1 is necessary to prevent hyperproliferation and depletion of the stem cell compartment. Collectively, our results indicate that Irgm1 is a powerful negative regulator of IFN-dependent stimulation in HSCs, with an essential role in preserving HSC number and function. The deleterious effects of excessive IFN signaling may explain how hematologic abnormalities arise in patients with inflammatory conditions.

Duke Scholars

Published In

Blood

DOI

EISSN

1528-0020

Publication Date

August 11, 2011

Volume

118

Issue

6

Start / End Page

1525 / 1533

Location

United States

Related Subject Headings

  • Signal Transduction
  • STAT1 Transcription Factor
  • Reverse Transcriptase Polymerase Chain Reaction
  • Receptors, Interferon
  • Oligonucleotide Array Sequence Analysis
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
  • Interferons
  • Interferon gamma Receptor
 

Citation

APA
Chicago
ICMJE
MLA
NLM
King, K. Y., Baldridge, M. T., Weksberg, D. C., Chambers, S. M., Lukov, G. L., Wu, S., … Goodell, M. A. (2011). Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood, 118(6), 1525–1533. https://doi.org/10.1182/blood-2011-01-328682
King, Katherine Y., Megan T. Baldridge, David C. Weksberg, Stuart M. Chambers, Georgi L. Lukov, Shihua Wu, Nathan C. Boles, et al. “Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.Blood 118, no. 6 (August 11, 2011): 1525–33. https://doi.org/10.1182/blood-2011-01-328682.
King KY, Baldridge MT, Weksberg DC, Chambers SM, Lukov GL, Wu S, et al. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood. 2011 Aug 11;118(6):1525–33.
King, Katherine Y., et al. “Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.Blood, vol. 118, no. 6, Aug. 2011, pp. 1525–33. Pubmed, doi:10.1182/blood-2011-01-328682.
King KY, Baldridge MT, Weksberg DC, Chambers SM, Lukov GL, Wu S, Boles NC, Jung SY, Qin J, Liu D, Songyang Z, Eissa NT, Taylor GA, Goodell MA. Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood. 2011 Aug 11;118(6):1525–1533.

Published In

Blood

DOI

EISSN

1528-0020

Publication Date

August 11, 2011

Volume

118

Issue

6

Start / End Page

1525 / 1533

Location

United States

Related Subject Headings

  • Signal Transduction
  • STAT1 Transcription Factor
  • Reverse Transcriptase Polymerase Chain Reaction
  • Receptors, Interferon
  • Oligonucleotide Array Sequence Analysis
  • Mice, Knockout
  • Mice, Inbred C57BL
  • Mice
  • Interferons
  • Interferon gamma Receptor