Electronic modulation of hyperpolarizable (porphinato)zinc(II) chromophores featuring ethynylphenyl-, ethynylthiophenyl-, ethynylthiazolyl-, and ethynylbenzothiazolyl-based electron-donating and -accepting moieties.

Journal Article (Journal Article)

A series of conjugated (porphinato)zinc(II)-based chromophores structurally related to [5-(4-dimethylaminophenylethynyl)-15-(5-nitrothienyl-2-ethynyl)-10,20-bis(3,5-bis(3,3-dimethyl-1-butyloxy)phenyl)]zinc(II) were synthesized using metal-catalyzed cross-coupling reactions involving [5-bromo-15-triisopropylsilylethynyl-10,20-diarylporphinato]zinc(II), [5-bromo-15-(4-dimethylaminophenylethynyl)-10,20-diarylporphinato]zinc(II), [5-(4-dimethylaminophenylethynyl)-15-ethynyl-10,20-diarylporphinato]zinc(II), and [5-(4-nitrophenylethynyl)-15-ethynyl-10,20-diarylporphinato]zinc(II), along with appropriately functionalized aryl, thienyl (or thiophenyl), thiazolyl, benzothiazolyl, and carbazolyl precursors. The linear and nonlinear optical properties of these asymmetrically 5,15-substitued-(10,20-diarylporphinato)zinc(II) chromophores that bear either 2-(9H-carbazol-9-yl)-thiophen-5-yl-ethynyl, 4-dimethylaminophenylethynyl, or 2-(N,N-diphenylamino)thiophen-5-yl-ethynyl electron-releasing groups and an electron-withdrawing group selected from 2-formyl-thiophen-5-yl-ethynyl, 2-(2,2-dicyanovinyl)-thiophen-5-yl-ethynyl, 4-nitrophenylethynyl, 6-nitrobenzothiazol-2-yl-ethynyl, or 5-nitrothiazol-2-yl-ethynyl are reported. The dynamic hyperpolarizabilities of these compounds were determined from hyper-Rayleigh light scattering measurements carried out at a fundamental incident irradiation wavelength (lambda(inc)) of 1300 nm; these measured beta1300 values ranged from 690 --> 1400 x 10(-30) esu. These data (i) show that these neutral dipolar molecules express substantial beta1300 values, (ii) highlight that reductions in the magnitude of the aromatic stabilization energy of (porphinato)metal-pendant arylethynyl groups have a significant impact upon the magnitude of the molecular hyperpolarizability, and (iii) provide insights into advantageous design modifications for closely related structures having potential utility in long-wavelength electrooptic applications.

Full Text

Duke Authors

Cited Authors

  • Zhang, T-G; Zhao, Y; Song, K; Asselberghs, I; Persoons, A; Clays, K; Therien, MJ

Published Date

  • November 2006

Published In

Volume / Issue

  • 45 / 24

Start / End Page

  • 9703 - 9712

PubMed ID

  • 17112266

Electronic International Standard Serial Number (EISSN)

  • 1520-510X

International Standard Serial Number (ISSN)

  • 0020-1669

Digital Object Identifier (DOI)

  • 10.1021/ic060898e


  • eng