Effect of cellular senescence on the albumin permeability of blood-derived endothelial cells.
Journal Article (Journal Article)
In this study, we tested the hypotheses that endothelial cells (ECs) derived from human umbilical cord blood (hCB-ECs) exhibit low permeability, which increases as hCB-ECs age and undergo senescence, and that the change in the permeability of hCB-ECs is due to changes in tight junction protein localization and the activity of exchange protein activated by cAMP (Epac)1. Albumin permeability across low-passage hCB-EC monolayers on Transwell membranes was 10 times lower than for human aortic ECs (HAECs) (P < 0.01) but similar to in vivo values in arteries. Expression of the tight junction protein occludin and tyrosine phosphorylation of occludin were less in hCB-ECs than in HAECs (P < 0.05). More hCB-ECs than HAECs underwent mitosis (P < 0.01). hCB-ECs that underwent >44 population doublings since isolation had a significantly higher permeability than hCB-ECs that underwent <31 population doublings (P < 0.05). This age-related increase in hCB-EC permeability was associated with an increase in tyrosine phosphorylation of occludin (P < 0.01); permeability and occludin phosphorylation were reduced by treatment with 2 μM resveratrol. Tyrosine phosphorylation of occludin and cell age influence the permeability of hCB-ECs, whereas levels of EC proliferation and expression of tight junction proteins did not explain the differences between hCB-EC and HAEC permeability. The elevated permeability in late passage hCB-ECs was reduced by 25-40% by elevation of membrane-associated cAMP and activation of the Epac1 pathway. Given the similarity to in vivo permeability to albumin and the high proliferation potential, hCB-ECs may be a suitable in vitro model to study transport-related pathologies and cell aging.
Full Text
Duke Authors
Cited Authors
- Cheung, TM; Ganatra, MP; Peters, EB; Truskey, GA
Published Date
- December 2012
Published In
Volume / Issue
- 303 / 11
Start / End Page
- H1374 - H1383
PubMed ID
- 23023872
Pubmed Central ID
- PMC3532541
Electronic International Standard Serial Number (EISSN)
- 1522-1539
International Standard Serial Number (ISSN)
- 0363-6135
Digital Object Identifier (DOI)
- 10.1152/ajpheart.00182.2012
Language
- eng