Uncertainty in spatially explicit population models

Published

Journal Article

Spatially explicit population models (SEPMs) are often used in conservation planning. However, confidence intervals around predictions of spatially explicit population models can greatly underestimate model uncertainty. This is partly because some sources of uncertainty are not amenable to the classic methods of uncertainty analysis. Here, we present a method that can be used to include multiple sources of uncertainty into more realistic confidence intervals. To illustrate our approach, we use a case study of the wood thrush (Hylocichla mustelina) in the fragmented forest of the North Carolina Piedmont. We examine 6 important sources of uncertainty in our spatially explicit population model: (1) the habitat map, (2) the dispersal algorithm, (3) clutch size, (4) edge effects, (5) dispersal distance, and (6) the intrinsic variability in our model. We found that uncertainty in the habitat map had the largest effect on model output, but each of the six factors had a significant effect and most had significant interactions with the other factors as well. We also found that our method of incorporating multiple sources of uncertainty created much larger confidence intervals than the projections that incorporated only sources of uncertainty included in most spatially explicit population model predictions. © 2008 Elsevier Ltd. All rights reserved.

Full Text

Duke Authors

Cited Authors

  • Minor, ES; McDonald, RI; Treml, EA; Urban, DL

Published Date

  • April 1, 2008

Published In

Volume / Issue

  • 141 / 4

Start / End Page

  • 956 - 970

International Standard Serial Number (ISSN)

  • 0006-3207

Digital Object Identifier (DOI)

  • 10.1016/j.biocon.2007.12.032

Citation Source

  • Scopus