Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins.

Journal Article (Journal Article)

The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.

Full Text

Duke Authors

Cited Authors

  • Meng, Q-J; Logunova, L; Maywood, ES; Gallego, M; Lebiecki, J; Brown, TM; Sládek, M; Semikhodskii, AS; Glossop, NRJ; Piggins, HD; Chesham, JE; Bechtold, DA; Yoo, S-H; Takahashi, JS; Virshup, DM; Boot-Handford, RP; Hastings, MH; Loudon, ASI

Published Date

  • April 10, 2008

Published In

Volume / Issue

  • 58 / 1

Start / End Page

  • 78 - 88

PubMed ID

  • 18400165

Pubmed Central ID

  • PMC3756141

Electronic International Standard Serial Number (EISSN)

  • 1097-4199

Digital Object Identifier (DOI)

  • 10.1016/j.neuron.2008.01.019


  • eng

Conference Location

  • United States