Plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection.

Published

Journal Article

A label-free approach using plasmonic coupling interference (PCI) nanoprobes for nucleic acid detection using surface-enhanced Raman scattering (SERS) is described. To induce a strong plasmonic coupling effect, a nanonetwork of silver nanoparticles with the Raman label located between adjacent nanoparticles is assembled by Raman-labeled DNA-locked nucleic acid (LNA) duplexes. The PCI method then utilizes specific nucleic acid sequences of interest as competitor elements for the Raman-labeled DNA strands to interfere the formation of nanonetworks in a competitive binding process. As a result, the plasmonic coupling effect induced through the formation of the nanonetworks is significantly diminished, resulting in a reduced SERS signal. The potential of the PCI technique for biomedical applications is illustrated by detecting single-nucleotide polymorphism (SNP) and microRNA sequences involved in breast cancers. The results of this study could lead to the development of nucleic acid diagnostic tools for biomedical diagnostics and biosensing applications using SERS detection.

Full Text

Duke Authors

Cited Authors

  • Wang, H-N; Vo-Dinh, T

Published Date

  • November 2011

Published In

Volume / Issue

  • 7 / 21

Start / End Page

  • 3067 - 3074

PubMed ID

  • 21913327

Pubmed Central ID

  • 21913327

Electronic International Standard Serial Number (EISSN)

  • 1613-6829

International Standard Serial Number (ISSN)

  • 1613-6810

Digital Object Identifier (DOI)

  • 10.1002/smll.201101380

Language

  • eng