Resurrection of crushed magnetization and chaotic dynamics in solution NMR spectroscopy

Published

Journal Article

We show experimentally and theoretically that two readily observed effects in solution nuclear magnetic resonance (NMR) - radiation damping and the dipolar field - combine to generate bizarre spin dynamics (including chaotic evolution) even with extraordinarily simple sequences. For example, seemingly insignificant residual magnetization after a crusher gradient triggers exponential regrowth of the magnetization, followed by aperiodic turbulent spin motion. The estimated Lyapunov exponent suggests the onset of spatial-temporal chaos and the existence of chaotic attractors. This effect leads to highly irreproducible experimental decays that amplify minor nonuniformities such as temperature gradients. Imaging applications and consequences for other NMR studies are discussed.

Full Text

Duke Authors

Cited Authors

  • Lin, YY; Lisitza, N; Ahn, S; Warren, WS

Published Date

  • October 6, 2000

Published In

Volume / Issue

  • 290 / 5489

Start / End Page

  • 118 - 121

International Standard Serial Number (ISSN)

  • 0036-8075

Digital Object Identifier (DOI)

  • 10.1126/science.290.5489.118

Citation Source

  • Scopus