Granule cells in aging rats are sexually dimorphic in their response to estradiol.

Published

Journal Article

Normal aging comprises cognitive decline, including deterioration of memory. It has been suggested that this decline in memory is sexually dimorphic because of the cessation in gonadal steroid secretion that occurs during reproductive aging in female, but not male, mammals. We wondered whether neurons in brain regions associated with learning and memory underwent morphological changes that were dimorphic as well and whether cessation of the secretion of gonadal steroids influenced these morphological changes. To explore these questions, we deprived and restored estrogens to young and old gonadectomized females and males and studied the morphology of dentate granule cells by intracellular dye filling in a lightly fixed slice preparation. We found the following: (1) Aged female dentate granule cells deprived of gonadal steroids long-term have a paucity of dendritic spines compared with young females deprived short-term; however, aged male dentate granule cells deprived of gonadal steroids long-term have no decrease in dendritic spines compared with young males deprived short-term. (2) Aged female dentate granule cells with long-term estrogen replacement at either high or low levels still had a decline in spine density. (3) Aged female dentate granule cells with short-term estradiol replacement had spine density increased to levels normally observed in young adults, whereas aged males with short-term estradiol replacement had decreased spine density. These data suggest that the response of rat dentate granule cells to aging and estradiol is sexually dimorphic and that, in females, the responsiveness of granule cells depends on the temporal pattern of estradiol replacement.

Full Text

Duke Authors

Cited Authors

  • Miranda, P; Williams, CL; Einstein, G

Published Date

  • May 1999

Published In

Volume / Issue

  • 19 / 9

Start / End Page

  • 3316 - 3325

PubMed ID

  • 10212291

Pubmed Central ID

  • 10212291

Electronic International Standard Serial Number (EISSN)

  • 1529-2401

International Standard Serial Number (ISSN)

  • 0270-6474

Digital Object Identifier (DOI)

  • 10.1523/jneurosci.19-09-03316.1999

Language

  • eng