The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength.


Journal Article

The effects of high voltage defibrillation shocks given to six swine were studied to determine if there is a limit to the advantage gained from increasing the shock strength. An endocardial electrode was placed in the right ventricle, and a 114-cm2 cutaneous patch was placed on the left lateral thorax. Monophasic (10 msec) and single capacitor biphasic (5/5 msec) shocks with leading edge voltages of 200, 400, 600, 800, and 990 volts (approximately 2.3-59 J) were tested. For monophasic shocks, the probability of successful defibrillation ranged from 0% at 200 V to 90% at 990 V. The incidence of postshock arrhythmia increased from 0% for successful shocks at 600 V to 67% for successful shocks at 990 V. For biphasic shocks, the probability of success peaked at 97% for the 600-, 800-, and 990-V shocks. The incidence of postshock arrhythmia increased from 8% at 400 V to 55% at 990 V. Although more postshock arrhythmias occurred at lower strengths for biphasic than for monophasic shocks, an efficacy criterion, quantifying the probability of defibrillation success and the probability that a postshock arrhythmia will not occur, was always higher for biphasic shocks. The probability of success never reached 100% for either waveform while the incidence of postshock arrhythmia increased as the shock strength increased. In conclusion, for the catheter-patch electrode configuration, increasing the shock strength does not always improve the probability of success and may increase the incidence of postshock arrhythmia.

Full Text

Duke Authors

Cited Authors

  • Cates, AW; Wolf, PD; Hillsley, RE; Souza, JJ; Smith, WM; Ideker, RE

Published Date

  • July 1994

Published In

Volume / Issue

  • 17 / 7

Start / End Page

  • 1208 - 1217

PubMed ID

  • 7937226

Pubmed Central ID

  • 7937226

Electronic International Standard Serial Number (EISSN)

  • 1540-8159

International Standard Serial Number (ISSN)

  • 0147-8389

Digital Object Identifier (DOI)

  • 10.1111/j.1540-8159.1994.tb01487.x


  • eng