Structural valve deterioration in mitral replacement surgery: comparison of Carpentier-Edwards supra-annular porcine and perimount pericardial bioprostheses.


Other Article

BACKGROUND: Bioprostheses preserved with glutaraldehyde, both porcine and pericardial, have been available as second-generation prostheses for valve replacement surgery. The performance with regard to structural valve deterioration with the Carpentier-Edwards supra-annular (CE-SAV) porcine bioprosthesis and the Carpentier-Edwards Perimount (CE-P) pericardial bioprosthesis (Baxter Healthcare Corp, Edwards Division, Santa Ana, Calif) was evaluated to determine whether there was a difference in mitral valve replacement. METHODS: The CE-SAV bioprosthesis was implanted in 1266 overall mitral valve replacements (isolated mitral, 1066; mitral in multiple, 200) and the CE-P bioprosthesis in 429 overall mitral valve replacements (isolated mitral, 328; mitral in multiple, 101). The mean age of the CE-SAV population was 64.2 +/- 12.2 years and that of the CE-P population, 60.7 +/- 11.7 years (P =.0001). For the study, structural valve deterioration was diagnosed at reoperation for explantation. RESULTS: The freedom from structural valve deterioration was evaluated to 10 years, and the freedom rates reported are at 10 years. For the overall mitral valve replacement groups, the actuarial freedom from deterioration was significant (P =.0001): CE-P > CE-SAV for 40 years or younger, 80% versus 60%; 41 to 50 years, 91% versus 61%; 51 to 60 years, 84% versus 69%; 61 to 70 years, 95% versus 75%. The older than 70-year group was 100% versus 92% (no significant difference). The actual freedom from structural valve deterioration also demonstrated the same pattern at 10 years: 40 years or younger, CE-P 82% versus CE-SAV 68%; 41 to 50 years, 92% versus 70%; 51 to 60 years, 90% versus 80%; 61 to 70 years, 97% versus 88%; and older than 70 years, 100% versus 97%. The independent risk factors of structural valve deterioration for the overall mitral valve replacement group were age and age groups and prosthesis type (CE-SAV > CE-P). The prosthesis type either in isolated replacement or in multiple replacement was not predictive of structural valve deterioration. The pathology of structural valve deterioration was different: 70% of CE-P failures were due to calcification and 57% of CE-SAV failures were due to combined calcification and leaflet tear. CONCLUSION: The actuarial and actual freedom from structural valve deterioration, diagnosed at reoperation, is greater at 10 years for CE-P than for CE-SAV bioprostheses. The mode of failure is different, and the cause remains obscure. Long-term evaluation is recommended, because the different modes of failure may alter the clinical performance by 15 and 20 years.

Full Text

Cited Authors

  • Eric Jamieson, WR; Marchand, MA; Pelletier, CL; Norton, R; Pellerin, M; Dubiel, TW; Aupart, MR; Daenen, WJ; Holden, MP; David, TE; Ryba, EA; Anderson, WN

Published Date

  • August 1999

Published In

Volume / Issue

  • 118 / 2

Start / End Page

  • 297 - 304

PubMed ID

  • 10425003

Pubmed Central ID

  • 10425003

Electronic International Standard Serial Number (EISSN)

  • 1097-685X

International Standard Serial Number (ISSN)

  • 0022-5223

Digital Object Identifier (DOI)

  • 10.1016/s0022-5223(99)70220-5


  • eng