Skip to main content
Journal cover image

Ontogeny in the fossil record: Diversification of body plans and the evolution of "aberrant" symmetry in Paleozoic echinoderms

Publication ,  Journal Article
Sumrall, CD; Wray, GA
Published in: Paleobiology
December 1, 2007

Echinoderms have long been characterized by the presence of ambulacra that exhibit pentaradiate symmetry and define five primary body axes. In reality, truly pentaradial ambulacral symmetry is a condition derived only once in the evolutionary history of echinoderms and is restricted to eleutherozoans, the clade that contains most living echinoderm species. In contrast, early echinoderms have a bilaterally symmetrical 2-1-2 arrangement, with three ambulacra radiating from the mouth. Branching of the two side ambulacra during ontogeny produces the five adult rays. During the Cambrian Explosion and Ordovician Radiation, some 30 clades of echinoderms evolved, many of which have aberrant ambulacral systems with one to four rays. Unfortunately, no underlying model has emerged that explains ambulacral homologies among disparate forms. Here we show that most Paleozoic echinoderms are characterized by uniquely identifiable ambulacra that develop in three distinct postlarval stages. Nearly all "aberrant" echinoderm morphologies can be explained by the paedomorphic ambulacra reduction (PAR) model through the loss of some combination of these growth stages during ontogeny. Superficially similar patterns of ambulacral reduction in distantly related clades have resulted from the parallel loss of homologous ambulacra during ontogeny. Pseudo-fivefold symmetry seen in Blastoidea and the true fivefold symmetry seen in Eleutherozoa result from great reduction and total loss, respectively, of the 2-1-2 symmetry early in ontogeny. These ambulacral variations suggest that both developmental and ecological constraints affect the evolution of novel echinoderm body plans. © 2007 The Paleontological Society. All rights reserved.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Paleobiology

DOI

ISSN

0094-8373

Publication Date

December 1, 2007

Volume

33

Issue

1

Start / End Page

149 / 163

Related Subject Headings

  • Paleontology
  • 3705 Geology
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology
  • 0403 Geology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: Diversification of body plans and the evolution of "aberrant" symmetry in Paleozoic echinoderms. Paleobiology, 33(1), 149–163. https://doi.org/10.1666/06053.1
Sumrall, C. D., and G. A. Wray. “Ontogeny in the fossil record: Diversification of body plans and the evolution of "aberrant" symmetry in Paleozoic echinoderms.” Paleobiology 33, no. 1 (December 1, 2007): 149–63. https://doi.org/10.1666/06053.1.
Sumrall, C. D., and G. A. Wray. “Ontogeny in the fossil record: Diversification of body plans and the evolution of "aberrant" symmetry in Paleozoic echinoderms.” Paleobiology, vol. 33, no. 1, Dec. 2007, pp. 149–63. Scopus, doi:10.1666/06053.1.
Journal cover image

Published In

Paleobiology

DOI

ISSN

0094-8373

Publication Date

December 1, 2007

Volume

33

Issue

1

Start / End Page

149 / 163

Related Subject Headings

  • Paleontology
  • 3705 Geology
  • 3104 Evolutionary biology
  • 3103 Ecology
  • 0603 Evolutionary Biology
  • 0602 Ecology
  • 0403 Geology