Origin of multiplexing capabilities of multifrequency magnetic ratchets

Journal Article (Journal Article)

Through a combination of theory, numerical simulation, and experiment, we investigate the motion of magnetic beads on the surface of a magnetic ratchet driven by multifrequency fields. Here, we focus on the influence of static forcing terms, which were not included in previous models, and we derive analytical models that show why the static forcing terms are responsible for inducing beads of two different sizes to move in opposite directions on the same ratchet potential. We begin our analysis with the simplest possible forcing model, and we show that the main effect of the static forcing terms is to delay the phase of flux reversal. From there, we move onto the full analysis and theoretically derive the phase range for which opposite motion among two different bead types is achieved. Based on these theoretical results, we conduct experimental investigations that explore the effects of bead size and static forcing coefficient on the direction of bead motion, which confirm most of the expected trends. These results shed light both on past experimental work both by ourselves and others, as well as elucidate the more general multiplexing capabilities of ratchets. © 2012 American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Ouyang, Y; Tahir, MA; Lichtenwalner, DJ; Yellen, BB

Published Date

  • April 26, 2012

Published In

Volume / Issue

  • 85 / 4

Electronic International Standard Serial Number (EISSN)

  • 1550-2376

International Standard Serial Number (ISSN)

  • 1539-3755

Digital Object Identifier (DOI)

  • 10.1103/PhysRevE.85.041407

Citation Source

  • Scopus