Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae.

Journal Article (Journal Article)

The production of inositol polyphosphate (IPs) and pyrophosphates (PP-IPs) from inositol 1,4,5-trisphosphate (I(1,4,5)P3) requires the 6-/3-/5-kinase activity of Ipk2 (also known as Arg82 and inositol polyphosphate multikinase). Here, we probed the distinct roles for I(1,4,5)P3 6- versus 3-kinase activities in IP metabolism and cellular functions reported for Ipk2. Expression of either I(1,4,5)P3 6- or 3-kinase activity rescued growth of ipk2-deficient yeast at high temperatures, whereas only 6-kinase activity enabled growth on ornithine as the sole nitrogen source. Analysis of IP metabolism revealed that the 3-kinase initiated the synthesis of novel pathway consisting of over eleven IPs and PP-IPs. This pathway was present in wild-type and ipk2 null cells, albeit at low levels as compared with inositol hexakisphosphate synthesis. The primary route of synthesis was: I(1,4,5)P3 --> I(1,3,4,5)P4 --> I(1,2,3,4,5)P5 --> PP-IP4 --> PP2-IP3 and required Kcs1 (or possibly Ipk2), Ipk1, a novel inositol pyrophosphate synthase, and then Kcs1 again, respectively. Mutation of kcs1 ablated this pathway in ipk2 null cells and overexpression of Kcs1 in ipk2 mutant cells phenocopied IP3K expression, confirming it harbors a novel 3-kinase activity. Our work provides a revised genetic map of IP metabolism in yeast and evidence for dosage compensation between IPs and PP-IPs downstream of I(1,4,5)P3 in the regulation of nucleocytoplasmic processes.

Full Text

Duke Authors

Cited Authors

  • Seeds, AM; Bastidas, RJ; York, JD

Published Date

  • July 29, 2005

Published In

Volume / Issue

  • 280 / 30

Start / End Page

  • 27654 - 27661

PubMed ID

  • 15944147

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.M505089200


  • eng

Conference Location

  • United States