Effects of pulse strength and pulse duration on in vitro DNA electromobility.

Published

Journal Article

Interstitial transport of DNA is a rate-limiting step in electric field-mediated gene delivery in vivo. Interstitial transport of macromolecules, such as plasmid DNA, over a distance of several cell layers, is inefficient due to small diffusion coefficient and inadequate convection. Therefore, we explored electric field as a novel driving force for interstitial transport of plasmid DNA. In this study, agarose gels were used to mimic the interstitium in tissues as they had been well characterized and could be prepared reproducibly. We measured the electrophoretic movements of fluorescently labeled plasmid DNA in agarose gels with three different concentrations (1.0%, 2.0% and 3.0%) subjected to electric pulses at three different field strengths (100, 200 and 400 V/cm) and four different pulse durations (10, 50, 75, 99 ms). We observed that: (1) shorter pulses (10 ms) were not as efficient as longer pulses in facilitating plasmid transport through agarose gels; (2) plasmid electromobility reached a plateau at longer pulse durations; and (3) plasmid electromobility increased with applied electric energy, up to a threshold, in all three gels. These data suggested that both pulse strength and duration needed to be adequately high for efficient plasmid transport through extracellular matrix. We also found that electric field was better than concentration gradient of DNA as a driving force for interstitial transport of plasmid DNA.

Full Text

Duke Authors

Cited Authors

  • Zaharoff, DA; Yuan, F

Published Date

  • April 2004

Published In

Volume / Issue

  • 62 / 1

Start / End Page

  • 37 - 45

PubMed ID

  • 14990324

Pubmed Central ID

  • 14990324

Electronic International Standard Serial Number (EISSN)

  • 1878-562X

International Standard Serial Number (ISSN)

  • 1567-5394

Digital Object Identifier (DOI)

  • 10.1016/j.bioelechem.2003.10.011

Language

  • eng