Regularized mixed dimensionality and density learning in computer vision

Journal Article

A framework for the regularized estimation of non-uniform dimensionality and density in high dimensional data is introduced in this work. This leads to learning stratifications, that is, mixture of manifolds representing different characteristics and complexities in the data set. The basic idea relies on modeling the high dimensional sample points as a process of Poisson mixtures, with regularizing restrictions and spatial continuity constraints. Theoretical asymptotic results for the model are presented as well, The presentation of the framework is complemented with artificial and real examples showing the importance of regularized stratification learning in computer vision applications. © 2007 IEEE.

Full Text

Duke Authors

Cited Authors

  • Haro, G; Randall, G; Sapiro, G

Published Date

  • October 11, 2007

Published In

International Standard Serial Number (ISSN)

  • 1063-6919

Digital Object Identifier (DOI)

  • 10.1109/CVPR.2007.383401

Citation Source

  • Scopus