Knowledge-based segmentation of SAR images

Journal Article

A new approach for the segmentation of still and video SAR images is described in this paper. A priori knowledge about the objects present in the image, e.g., target, shadow, and background terrain, is introduced via Bayes' rule. Posterior probabilities obtained in this way are then anisotropically smoothed, and the image segmentation is obtained via MAP classifications of the smoothed data. When segmenting sequences of images, the smoothed posterior probabilities of past frames are used to learn the prior distributions in the succeeding frame. We show, via a large number of examples from public data sets, that this method provides an efficient and fast technique for addressing the segmentation of SAR data.

Duke Authors

Cited Authors

  • Haker, S; Sapiro, G; Tannenbaum, A

Published Date

  • 1998

Published In

  • IEEE International Conference on Image Processing

Volume / Issue

  • 1 /

Start / End Page

  • 597 - 601