Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts.

Published

Journal Article

Erythropoietin has recently been shown to have effects beyond hematopoiesis such as prevention of neuronal and cardiac apoptosis secondary to ischemia. In this study, we evaluated the in vivo protective potential of erythropoietin in the reperfused rabbit heart following ventricular ischemia. We show that "preconditioning" with erythropoietin activates cell survival pathways in myocardial tissue in vivo and adult rabbit cardiac fibroblasts in vitro. These pathways, activated by erythropoietin in both whole hearts and cardiac fibroblasts, are also activated acutely by ischemia/reperfusion injury. Moreover, in vivo studies indicate that erythropoietin treatment either prior to or during ischemia significantly enhances cardiac function and recovery, including left ventricular contractility, following myocardial ischemia/reperfusion. Our data indicate that a contributing in vivo cellular mechanism of this protection is mitigation of myocardial cell apoptosis. This results in decreased infarct size as evidenced by area at risk studies following in vivo ischemia/reperfusion injury, translating into more viable myocardium and less ventricular dysfunction. Therefore, erythropoietin treatment may offer novel protection against ischemic heart disease and may act, at least in part, by direct action on cardiac fibroblasts and myocytes to alter survival and ventricular remodeling.

Full Text

Duke Authors

Cited Authors

  • Parsa, CJ; Kim, J; Riel, RU; Pascal, LS; Thompson, RB; Petrofski, JA; Matsumoto, A; Stamler, JS; Koch, WJ

Published Date

  • May 2004

Published In

Volume / Issue

  • 279 / 20

Start / End Page

  • 20655 - 20662

PubMed ID

  • 15020586

Pubmed Central ID

  • 15020586

Electronic International Standard Serial Number (EISSN)

  • 1083-351X

International Standard Serial Number (ISSN)

  • 0021-9258

Digital Object Identifier (DOI)

  • 10.1074/jbc.m314099200

Language

  • eng