Stimulation of cartilage macromolecule synthesis by adenosine 3',5'-monophosphate.

Published

Journal Article

The role of cyclic AMP in the regulation of cartilage macromolecule synthesis in vitro was studied in pelvic cartilage from 10-12 day chick embryos. Incubation of cartilages in medium containing 0.5 mM cyclic AMP resulted in a 30% inhibition of 35SO4-2, [3H]leucine and [3H]uridine incorporation into proteoglycan, total protein and RNA, respectively. Higher concentrations of cyclic AMP had no greater effects. In contrast, butyrylated cyclic AMP derivatives (0.5-5.0 mM) added to the incubation medium stimulated (50-100%) the incorporation of these radiolabeled precursors into cartilage macromolecules. Theophylline, in concentrations (0.1-0.5 mM) which raise intracellular cyclic AMP, also increases the incorporation of radiolabeled precursors into macromolecules. The data indicate that exogenous cyclic AMP and butyrylated cyclic AMP derivatives have paradoxical effects on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives, not exogenous cyclic AMP, mimic the effects of intracellular cyclic AMP. Incubation of embryonic chicken cartilage with exogenous cyclic AMP results in the extracellular degradation of the cyclic AMP to adenosine. Adenosine (0.125 mM) inhibits precursor incorporation into cartilage macromolecules. The metabolism of exogenous cyclic AMP generates sufficient adenosine to account for the observed inhibitory effects of exogenous cyclic AMP on cartilage macromolecule synthesis. Butyrylated cyclic AMP derivatives are not degraded during incubation with cartilage. The data indicate that cartilage is a tissue in which the effect of cyclic AMP is to stimulate anabolic processes.

Full Text

Duke Authors

Cited Authors

  • Drezner, MK; Neelon, FA; Lebovitz, HE

Published Date

  • April 2, 1976

Published In

Volume / Issue

  • 425 / 4

Start / End Page

  • 521 - 531

PubMed ID

  • 177055

Pubmed Central ID

  • 177055

International Standard Serial Number (ISSN)

  • 0006-3002

Digital Object Identifier (DOI)

  • 10.1016/0005-2787(76)90016-2

Language

  • eng

Conference Location

  • Netherlands