Lymphoma models for B cell activation and tolerance. V. Anti-Ig mediated growth inhibition is reversed by phorbol myristate acetate but does not involve changes in cytosolic free calcium.


Journal Article

B cell lymphomas which can be growth inhibited by crosslinking their surface IgM receptors by anti-Ig reagents provide models for normal B cell regulation and tolerance. WEHI-231 and CH31 are two independently derived lines that are exquisitely sensitive to negative signalling by antibodies specific for mu or kappa chains, but are unaffected by antibodies against MHC class 1 or 2 antigens. In order to determine the mechanism of this growth inhibition as a model for tolerance, we have examined the roles played by protein kinase C activation and calcium mobilization/influx during negative signalling in these cells. We found that growth inhibition caused by anti-mu crosslinking was reversed in the presence of either phorbol myristate acetate (PMA) or by lipopolysaccharide (LPS) from E. coli. The effect of PMA on negative signalling was a true reversal since phorbol esters could be added after anti-mu treatment, thus allowing nearly normal cellular progression into the S phase of the cell cycle. In contrast, pretreatment with PMA did not provide protection against the growth inhibition from anti-mu. Indeed, a "desensitization" protocol demonstrated that PMA pretreatment actually decreased reversal by both PMA and LPS of the effects of anti-mu on B lymphoma growth. These studies suggest that both LPS and PMA act via at least one common intermediate, which is assumed to involve activation and translocation of protein kinase C. Analysis of changes in calcium ion concentration after treatment with anti-Ig reagents showed both mobilization from internal stores and influx via calcium channels in WEHI-231, as has been reported for normal B cells. However, these changes did not correlate with negative signalling for the several reasons. Firstly, anti-mu inhibition of the growth of WEHI-231 could be induced in the relative absence of extracellular Ca++ or in quin-2 loaded (buffered) cells. Secondly, pretreatment with high concentrations of PMA ablated calcium mobilization, yet failed to modulate growth inhibition in WEHI-231 cells. Moreover, LPS provided protection from the effects of anti-mu yet did not alter cellular [Cai++]. In addition, PMA posttreatment (under conditions causing a reversal of the effects of anti-mu) can be applied as long as four hours after the initial exposure to anti-mu and the rapid measurable changes in calcium flux. Indeed, such changes in intracellular free calcium occurred in elutriated WEHI-231 lymphoma cells at all phases of the cell cycle, although we have previously identified early G1 as the only critical period in which negative signalling can be delivered.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

Duke Authors

Cited Authors

  • Scott, DW; Livnat, D; Whitin, J; Dillon, SB; Snyderman, R; Pennell, CA

Published Date

  • 1987

Published In

Volume / Issue

  • 3 / 2

Start / End Page

  • 109 - 120

PubMed ID

  • 3509921

Pubmed Central ID

  • 3509921

International Standard Serial Number (ISSN)

  • 0724-6803


  • eng

Conference Location

  • United States