N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.

Journal Article

Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol contributes to endothelium-derived relaxing factor bioactivity in plasma and vascular smooth muscle. Potentiation of the effects of nitroglycerin by N-acetylcysteine can be attributed to its enhanced biotransformation to an endothelium-derived relaxing factor equivalent, such as nitrosothiol. These observations support the notion of an equilibrium between nitric oxide and nitrosothiol in biological systems that may be influenced by redox state.

Full Text

Duke Authors

Cited Authors

  • Creager, MA; Roddy, MA; Boles, K; Stamler, JS

Published Date

  • February 1997

Published In

Volume / Issue

  • 29 / 2

Start / End Page

  • 668 - 672

PubMed ID

  • 9040454

Pubmed Central ID

  • 9040454

International Standard Serial Number (ISSN)

  • 0194-911X

Digital Object Identifier (DOI)

  • 10.1161/01.hyp.29.2.668


  • eng

Conference Location

  • United States