Bayesian Gaussian Copula Factor Models for Mixed Data.

Journal Article (Journal Article)

Gaussian factor models have proven widely useful for parsimoniously characterizing dependence in multivariate data. There is a rich literature on their extension to mixed categorical and continuous variables, using latent Gaussian variables or through generalized latent trait models acommodating measurements in the exponential family. However, when generalizing to non-Gaussian measured variables the latent variables typically influence both the dependence structure and the form of the marginal distributions, complicating interpretation and introducing artifacts. To address this problem we propose a novel class of Bayesian Gaussian copula factor models which decouple the latent factors from the marginal distributions. A semiparametric specification for the marginals based on the extended rank likelihood yields straightforward implementation and substantial computational gains. We provide new theoretical and empirical justifications for using this likelihood in Bayesian inference. We propose new default priors for the factor loadings and develop efficient parameter-expanded Gibbs sampling for posterior computation. The methods are evaluated through simulations and applied to a dataset in political science. The models in this paper are implemented in the R package bfa.

Full Text

Duke Authors

Cited Authors

  • Murray, JS; Dunson, DB; Carin, L; Lucas, JE

Published Date

  • June 2013

Published In

Volume / Issue

  • 108 / 502

Start / End Page

  • 656 - 665

PubMed ID

  • 23990691

Pubmed Central ID

  • PMC3753118

Electronic International Standard Serial Number (EISSN)

  • 1537-274X

International Standard Serial Number (ISSN)

  • 0162-1459

Digital Object Identifier (DOI)

  • 10.1080/01621459.2012.762328


  • eng