Lower Bounds for Kinetic Planar Subdivisions

Journal Article (Journal Article)

We revisit the notion of kinetic efficiency for noncanonically defined discrete attributes of moving data, like binary space partitions and triangulations. Under reasonable computational models, we obtain lower bounds on the minimum amount of work required to maintain any binary space partition of moving segments in the plane or any Steiner triangulation of moving points in the plane. Such lower bounds—the first to be obtained in the kinetic context—are necessary to evaluate the efficiency of kinetic data structures when the attribute to be maintained is not canonically defined.

Full Text

Duke Authors

Cited Authors

  • Agarwal, PK; Basch, J; de Berg, M; Guibas, LJ; Hershberger, J

Published Date

  • January 1, 2000

Published In

Volume / Issue

  • 24 / 4

Start / End Page

  • 721 - 733

Electronic International Standard Serial Number (EISSN)

  • 1432-0444

International Standard Serial Number (ISSN)

  • 0179-5376

Digital Object Identifier (DOI)

  • 10.1007/s4540010060

Citation Source

  • Scopus