Predicting transition temperatures of elastin-like polypeptide fusion proteins.

Journal Article (Journal Article)

Elastin-like polypeptides (ELPs) are thermally sensitive peptide polymers that undergo thermally triggered phase separation and this behavior is imparted to soluble proteins when they are fused to an ELP. The transition temperature of the ELP fusion protein is observed to be different than that of a free ELP, indicating that the surface properties of the fused protein modulate the thermal behavior of ELPs. Understanding this effect is important for the rational design of applications that exploit the phase transition behavior of ELP fusion proteins. We had previously developed a biophysical model that explained the effect of hydrophobic proteins on depressing the transition temperature of ELP fusion proteins relative to free ELP. Here, we extend the model to elucidate the effect of hydrophilic proteins on the thermal behavior of ELP fusion proteins. A linear correlation was found between overall residue composition of accessible protein surface weighted by a characteristic transition temperature for each residue and the difference in transition temperatures between the ELP protein fusion and the corresponding free ELP. In breaking down the contribution of residues to polar, nonpolar, and charged, the model revealed that charged residues are the most important parameter in altering the transition temperature of an ELP fusion relative to the free ELP.

Full Text

Duke Authors

Cited Authors

  • Christensen, T; Hassouneh, W; Trabbic-Carlson, K; Chilkoti, A

Published Date

  • May 2013

Published In

Volume / Issue

  • 14 / 5

Start / End Page

  • 1514 - 1519

PubMed ID

  • 23565607

Pubmed Central ID

  • PMC3667497

Electronic International Standard Serial Number (EISSN)

  • 1526-4602

International Standard Serial Number (ISSN)

  • 1525-7797

Digital Object Identifier (DOI)

  • 10.1021/bm400167h


  • eng