Light probes in a strongly coupled anisotropic plasma

Published

Journal Article

We employ the gauge/gravity duality to study the jet quenching of light probes traversing a static yet anisotropic strongly coupled N=4 super Yang-Mills plasma. We compute the stopping distance of an image jet induced by a massless source field, which is characterized by a massless particle falling along the null geodesic in the WKB approximation, in an anisotropic dual geometry introduced by Mateos and Trancancelli. At mid and large anisotropic regimes, the stopping distances of a probe traveling in the anisotropic plasma along various orientations are suppressed compared to those in an isotropic plasma, especially along the longitudinal direction at equal temperature. However, when fixing the entropy density, the anisotropic values of stopping distances near the transverse directions slightly surpass the isotropic values. In general, the jet quenching of light probes is increased by the anisotropic effect in a strongly coupled and equilibrium plasma. © 2013 American Physical Society.

Full Text

Duke Authors

Cited Authors

  • Müller, B; Yang, DL

Published Date

  • February 11, 2013

Published In

Volume / Issue

  • 87 / 4

Electronic International Standard Serial Number (EISSN)

  • 1550-2368

International Standard Serial Number (ISSN)

  • 1550-7998

Digital Object Identifier (DOI)

  • 10.1103/PhysRevD.87.046004

Citation Source

  • Scopus