Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics.

Published

Journal Article

Single-cell genetic manipulation is expected to substantially advance the field of systems neuroscience. However, existing gene delivery techniques do not allow researchers to electrophysiologically characterize cells and to thereby establish an experimental link between physiology and genetics for understanding neuronal function. In the mouse brain in vivo, we found that neurons remained intact after 'blind' whole-cell recording, that DNA vectors could be delivered through the patch-pipette during such recordings and that these vectors drove protein expression in recorded cells for at least 7 d. To illustrate the utility of this approach, we recorded visually evoked synaptic responses in primary visual cortical cells while delivering DNA plasmids that allowed retrograde, monosynaptic tracing of each neuron's presynaptic inputs. By providing a biophysical profile of a cell before its specific genetic perturbation, this combinatorial method captures the synaptic and anatomical receptive field of a neuron.

Full Text

Duke Authors

Cited Authors

  • Rancz, EA; Franks, KM; Schwarz, MK; Pichler, B; Schaefer, AT; Margrie, TW

Published Date

  • April 2011

Published In

Volume / Issue

  • 14 / 4

Start / End Page

  • 527 - 532

PubMed ID

  • 21336272

Pubmed Central ID

  • 21336272

Electronic International Standard Serial Number (EISSN)

  • 1546-1726

Digital Object Identifier (DOI)

  • 10.1038/nn.2765

Language

  • eng

Conference Location

  • United States