An improved sub-packetization bound for minimum storage regenerating codes

Published

Journal Article

Distributed storage systems employ codes to provide resilience to failure of multiple storage disks. In particular, an (n, κ) maximum distance separable (MDS) code stores k symbols in n disks such that the overall system is tolerant to a failure of up to n ? k disks. However, access to at least k disks is still required to repair a single erasure. To reduce repair bandwidth, array codes are used where the stored symbols or packets are vectors of length The MDS array codes have the potential to repair a single erasure using a fraction 1/(n ?κ) of data stored in the remaining disks. We introduce new methods of analysis, which capitalize on the translation of the storage system problem into a geometric problem on a set of operators and subspaces. In particular, we ask the following question: for a given (n, κ), what is the minimum vector-length or subpacketization factor - required to achieve this optimal fraction? For exact recovery of systematic disks in an MDS code of low redundancy, i.e., κ/n > 1/2, the best known explicit codes have a subpacketization factor , which is exponential in k. It has been conjectured that for a fixed number of parity nodes, it is in fact necessary for to be exponential in k. In this paper, we provide a new log-squared converse bound on k for a given -, and prove that k ≤ 2 log2 (logδ +1), for an arbitrary number of parity nodes r = n ? k, where δ = r/(r ? 1). © 1963-2012 IEEE.

Full Text

Duke Authors

Cited Authors

  • Goparaju, S; Tamo, I; Calderbank, R

Published Date

  • January 1, 2014

Published In

Volume / Issue

  • 60 / 5

Start / End Page

  • 2770 - 2779

International Standard Serial Number (ISSN)

  • 0018-9448

Digital Object Identifier (DOI)

  • 10.1109/TIT.2014.2309000

Citation Source

  • Scopus