Experimental radiotherapy Radiation induces aerobic glycolysis through reactive oxygen species


Journal Article

Background and purpose Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2- deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used concurrently with radiation, without preventing reoxygenation. © 2013 Elsevier Ireland Ltd. All rights reserved.

Full Text

Duke Authors

Cited Authors

  • Zhong, J; Rajaram, N; Brizel, DM; Frees, AE; Ramanujam, N; Batinic-Haberle, I; Dewhirst, MW

Published Date

  • March 1, 2013

Published In

Volume / Issue

  • 106 / 3

Start / End Page

  • 390 - 396

Electronic International Standard Serial Number (EISSN)

  • 1879-0887

International Standard Serial Number (ISSN)

  • 0167-8140

Digital Object Identifier (DOI)

  • 10.1016/j.radonc.2013.02.013

Citation Source

  • Scopus