Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows

Published

Journal Article

We consider a system coupling the incompressible Navier-Stokes equations to the Vlasov-Fokker-Planck equation. Such a problem arises in the description of particulate flows. We design a numerical scheme to simulate the behavior of the system. This scheme is asymptotic-preserving, thus efficient in both the kinetic and hydrodynamic regimes. It has a numerical stability condition controlled by the non-stiff convection operator, with an implicit treatment of the stiff drag term and the Fokker-Planck operator. Yet, consistent to a standard asymptotic-preserving Fokker-Planck solver or an incompressible Navier-Stokes solver, only the conjugate-gradient method and fast Poisson and Helmholtz solvers are needed. Numerical experiments are presented to demonstrate the accuracy and asymptotic behavior of the scheme, with several interesting applications. © 2013 Elsevier Inc.

Full Text

Duke Authors

Cited Authors

  • Goudon, T; Jin, S; Liu, JG; Yan, B

Published Date

  • August 1, 2013

Published In

Volume / Issue

  • 246 /

Start / End Page

  • 145 - 164

Electronic International Standard Serial Number (EISSN)

  • 1090-2716

International Standard Serial Number (ISSN)

  • 0021-9991

Digital Object Identifier (DOI)

  • 10.1016/j.jcp.2013.03.038

Citation Source

  • Scopus