Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria.

Published

Journal Article

Model surfaces with switchable functionality based on nanopatterned, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes were fabricated using interferometric lithography combined with surface-initiated polymerization. The temperature-triggered hydration and conformational changes of nanopatterned PNIPAAm brushes reversibly modulate the spatial concealment and exposure of molecules that are immobilized in the intervals between nanopatterned brushes. A biocidal quaternary ammonium salt (QAS) was used to demonstrate the utility of nanopatterned PNIPAAm brushes to control biointerfacial interactions with bacteria. QAS was integrated into polymer-free regions of the substrate between nanopatterned PNIPAAm brushes. The biocidal efficacy and release properties of these surfaces were tested against Escherichia coli K12. Above the lower critical solution temperature (LCST) of PNIPAAm, desolvated, collapsed polymer chains facilitate the attachment of bacteria and expose QAS moieties that kill attached bacteria. Upon a reduction of the temperature below the LCST, swollen PNIPAAm chains promote the release of dead bacteria. These results demonstrate that nanopatterned PNIPAAm/QAS hybrid surfaces are model systems that exhibit an ability to undergo noncovalent, dynamic, and reversible changes in structure that can be used to control the attachment, killing, and release of bacteria in response to changes in temperature.

Full Text

Cited Authors

  • Yu, Q; Cho, J; Shivapooja, P; Ista, LK; López, GP

Published Date

  • October 2013

Published In

Volume / Issue

  • 5 / 19

Start / End Page

  • 9295 - 9304

PubMed ID

  • 24041191

Pubmed Central ID

  • 24041191

Electronic International Standard Serial Number (EISSN)

  • 1944-8252

International Standard Serial Number (ISSN)

  • 1944-8244

Digital Object Identifier (DOI)

  • 10.1021/am4022279

Language

  • eng