Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro.

Published online

Journal Article

BACKGROUND: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia bands. Although the molecular pathology of DD is unknown, recent evidence suggests that beta-catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show enhanced contraction and isometric tension-dependent changes in beta-catenin and fibronectin levels. METHODS: Western blots of beta-catenin and fibronectin levels were determined for control and disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen contraction was quantified, and immunocytochemistry analysis of filamentous actin performed. RESULTS: Disease cells exhibited enhanced collagen contraction activity compared to control cells. Alterations in isometric tension of collagen matrices triggered dramatic changes in beta-catenin and fibronectin levels, including a transient increase in beta-catenin levels within disease cells, while fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast, both fibronectin and beta-catenin levels increased in attached collagen-matrix cultures of disease cells, while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and spreading of disease cell in collagen matrices. CONCLUSION: Three-dimensional collagen matrix cultures of primary disease cell lines are more contractile and express a more extensive filamentous actin network than patient-matched control cultures. The elevated levels of beta-catenin and Fn seen in collagen matrix cultures of disease fibroblasts can be regulated by changes in isometric tension.

Full Text

Duke Authors

Cited Authors

  • Howard, JC; Varallo, VM; Ross, DC; Roth, JH; Faber, KJ; Alman, B; Gan, BS

Published Date

  • July 16, 2003

Published In

Volume / Issue

  • 4 /

Start / End Page

  • 16 -

PubMed ID

  • 12866952

Pubmed Central ID

  • 12866952

Electronic International Standard Serial Number (EISSN)

  • 1471-2474

Digital Object Identifier (DOI)

  • 10.1186/1471-2474-4-16

Language

  • eng

Conference Location

  • England