Skip to main content

Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters.

Publication ,  Journal Article
Giaddui, T; Cui, Y; Galvin, J; Yu, Y; Xiao, Y
Published in: Med Phys
June 2013

PURPOSE: To investigate the effect of energy (kVp) and filters (no filter, half Bowtie, and full Bowtie) on the dose response curves of the Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters (OSLDs) in CBCT dose fields. To measure surface and internal doses received during x-ray volume imager (XVI) (Version R4.5) and on board imager (OBI) (Version 1.5) CBCT imaging protocols using these two types of dosimeters. METHODS: Gafchromic XRQA2 film and nanoDot OSLD dose response curves were generated at different kV imaging settings used by XVI (software version R4.5) and OBI (software version 1.5) CBCT systems. The settings for the XVI system were: 100 kVp∕F0 (no filter), 120 kVp∕F0, and 120 kVp∕F1 (Bowtie filter), and for the OBI system were: 100 kVp∕full fan, 125 kVp∕full fan, and 125 kVp∕half fan. XRQA2 film was calibrated in air to air kerma levels between 0 and 11 cGy and scanned using reflection scanning mode with the Epson Expression 10000 XL flat-bed document scanner. NanoDot OSLDs were calibrated on phantom to surface dose levels between 0 and 14 cGy and read using the inLight(TM) MicroStar reader. Both dosimeters were used to measure in field surface and internal doses in a male Alderson Rando Phantom. RESULTS: Dose response curves of XRQA2 film and nanoDot OSLDs at different XVI and OBI CBCT settings were reported. For XVI system, the surface dose ranged between 0.02 cGy in head region during fast head and neck scan and 4.99 cGy in the chest region during symmetry scan. On the other hand, the internal dose ranged between 0.02 cGy in the head region during fast head and neck scan and 3.17 cGy in the chest region during chest M20 scan. The average (internal and external) dose ranged between 0.05 cGy in the head region during fast head and neck scan and 2.41 cGy in the chest region during chest M20 scan. For OBI system, the surface dose ranged between 0.19 cGy in head region during head scan and 4.55 cGy in the pelvis region during spot light scan. However, the internal dose ranged between 0.47 cGy in the head region during head scan and 5.55 cGy in the pelvis region during spot light scan. The average (internal and external) dose ranged between 0.45 cGy in the head region during head scan and 3.59 cGy in the pelvis region during spot light scan. Both Gafchromic XRQA2 film and nanoDot OSLDs gave close estimation of dose (within uncertainties) in many cases. Though, discrepancies of up to 20%-30% were observed in some cases. CONCLUSIONS: Dose response curves of Gafchromic XRQA2 film and nanoDot OSLDs indicated that the dose responses of these two dosimeters were different even at the same photon energy when different filters were used. Uncertainty levels of both dosimetry systems were below 6% at doses above 1 cGy. Both dosimetry systems gave almost similar estimation of doses (within uncertainties) in many cases, with exceptions of some cases when the discrepancy was around 20%-30%. New versions of the CBCT systems (investigated in this study) resulted in lower imaging doses compared with doses reported on earlier versions in previous studies.

Duke Scholars

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

June 2013

Volume

40

Issue

6

Start / End Page

062102

Location

United States

Related Subject Headings

  • Thermoluminescent Dosimetry
  • Sensitivity and Specificity
  • Reproducibility of Results
  • Radiation Dosage
  • Quantum Dots
  • Nuclear Medicine & Medical Imaging
  • Lasers
  • Film Dosimetry
  • Equipment Failure Analysis
  • Equipment Design
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Giaddui, T., Cui, Y., Galvin, J., Yu, Y., & Xiao, Y. (2013). Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters. Med Phys, 40(6), 062102. https://doi.org/10.1118/1.4803466
Giaddui, Tawfik, Yunfeng Cui, James Galvin, Yan Yu, and Ying Xiao. “Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters.Med Phys 40, no. 6 (June 2013): 062102. https://doi.org/10.1118/1.4803466.
Giaddui, Tawfik, et al. “Comparative dose evaluations between XVI and OBI cone beam CT systems using Gafchromic XRQA2 film and nanoDot optical stimulated luminescence dosimeters.Med Phys, vol. 40, no. 6, June 2013, p. 062102. Pubmed, doi:10.1118/1.4803466.

Published In

Med Phys

DOI

EISSN

2473-4209

Publication Date

June 2013

Volume

40

Issue

6

Start / End Page

062102

Location

United States

Related Subject Headings

  • Thermoluminescent Dosimetry
  • Sensitivity and Specificity
  • Reproducibility of Results
  • Radiation Dosage
  • Quantum Dots
  • Nuclear Medicine & Medical Imaging
  • Lasers
  • Film Dosimetry
  • Equipment Failure Analysis
  • Equipment Design