Hierarchical organization via a facilitation cascade in intertidal cordgrass bed communities.

Published

Journal Article

It has recently been proposed that many communities are structured by a hierarchy of interactions in which facilitation by foundation species is of primary importance. We conducted the first explicit experimental test of this hypothesis by investigating the organization of positive interactions on New England cobblestone beaches. In this midintertidal community, wave-generated substrate instability and solar stress largely limit marine organisms to the shelter of cordgrass beds. Cordgrass, which can establish and persist without the aid of other foundation species, facilitates a dense assemblage of inhabitants (e.g., mussels, snails, seaweeds) with roots/rhizomes that stabilize substrate and a dense canopy that baffles waves and provides shade. Within the cordgrass bed community, ribbed mussels further enhance physical conditions and densities of other species (e.g., amphipods, barnacles) by providing crevice space and hard substrate. We conclude that cordgrass bed communities are hierarchically organized: secondary interactions (e.g., facilitation by ribbed mussels) play a key role within an assemblage dependent on primary facilitation by the independently successful foundation species cordgrass. Our results identify emergent indirect positive interactions in the form of facilitation cascades, have broad implications for conservation, and help unify existing models of community organization that were developed without considering the fundamental role of positive interactions.

Full Text

Duke Authors

Cited Authors

  • Altieri, AH; Silliman, BR; Bertness, MD

Published Date

  • February 2007

Published In

Volume / Issue

  • 169 / 2

Start / End Page

  • 195 - 206

PubMed ID

  • 17211804

Pubmed Central ID

  • 17211804

Electronic International Standard Serial Number (EISSN)

  • 1537-5323

International Standard Serial Number (ISSN)

  • 0003-0147

Digital Object Identifier (DOI)

  • 10.1086/510603

Language

  • eng