Relationship between NaCl- and H2O2-induced cytosolic Ca2+ increases in response to stress in Arabidopsis.

Journal Article (Journal Article)

Salinity is among the environmental factors that affect plant growth and development and constrain agricultural productivity. Salinity stress triggers increases in cytosolic free Ca(2+) concentration ([Ca(2+)]i) via Ca(2+) influx across the plasma membrane. Salinity stress, as well as other stresses, induces the production of reactive oxygen species (ROS). It is well established that ROS also triggers increases in [Ca(2+)]i. However, the relationship and interaction between salinity stress-induced [Ca(2+)]i increases and ROS-induced [Ca(2+)]i increases remain poorly understood. Using an aequorin-based Ca(2+) imaging assay we have analyzed [Ca(2+)]i changes in response to NaCl and H2O2 treatments in Arabidopsis thaliana. We found that NaCl and H2O2 together induced larger increases in [Ca(2+)]i in Arabidopsis seedlings than either NaCl or H2O2 alone, suggesting an additive effect on [Ca(2+)]i increases. Following a pre-treatment with either NaCl or H2O2, the subsequent elevation of [Ca(2+)]i in response to a second treatment with either NaCl or H2O2 was significantly reduced. Furthermore, the NaCl pre-treatment suppressed the elevation of [Ca(2+)]i seen with a second NaCl treatment more than that seen with a second treatment of H2O2. A similar response was seen when the initial treatment was with H2O2; subsequent addition of H2O2 led to less of an increase in [Ca(2+)]i than did addition of NaCl. These results imply that NaCl-gated Ca(2+) channels and H2O2-gated Ca(2+) channels may differ, and also suggest that NaCl- and H2O2-evoked [Ca(2+)]i may reduce the potency of both NaCl and H2O2 in triggering [Ca(2+)]i increases, highlighting a feedback mechanism. Alternatively, NaCl and H2O2 may activate the same Ca(2+) permeable channel, which is expressed in different types of cells and/or activated via different signaling pathways.

Full Text

Duke Authors

Cited Authors

  • Jiang, Z; Zhu, S; Ye, R; Xue, Y; Chen, A; An, L; Pei, Z-M

Published Date

  • January 2013

Published In

Volume / Issue

  • 8 / 10

Start / End Page

  • e76130 -

PubMed ID

  • 24124535

Pubmed Central ID

  • PMC3790670

Electronic International Standard Serial Number (EISSN)

  • 1932-6203

International Standard Serial Number (ISSN)

  • 1932-6203

Digital Object Identifier (DOI)

  • 10.1371/journal.pone.0076130


  • eng