Aldehydes in passenger vehicles: An analysis of data from the RIOPA Study 1999-2001

Journal Article

In-vehicle air quality (IVAQ) can be a major health concern due to factors such as urban sprawl and increased commuting time spent by individuals in vehicles. Few studies, particularly in the U.S., have considered in-vehicle toxic air contaminants, and none to date collected/analyzed field data in multiple communities across multiple climate zones. This study presents analyses of field data collected during the RIOPA Study from participating non-smoking adults for communities in Los Angeles County, CA, Elizabeth, NJ and Houston, TX. A significant difference (p<0.001) in in-vehicle formaldehyde concentrations was observed, with the median concentration of in-vehicle formaldehyde in the CA communities about twice as high as in the NJ and TX communities. The highest median concentration of in-vehicle acetaldehyde was observed among the TX participants, over 40% higher than the overall study median. Given small sample sizes, the community (state) differences may be driven independently by differences in individual vehicle conditions and driving habits. Positive correlations were found between average community outdoor relative humidity in CA and NJ and in-vehicle formaldehyde and acetaldehyde concentrations. The amount of time car windows were reported as closed was inversely correlated with in-vehicle formaldehyde across study locations, and for in-vehicle acetaldehyde in CA and TX. Average wind speed and varying sky conditions also had suggested associations to in-vehicle formaldehyde and acetaldehyde. In CA and TX, 88% (7/8) of participants with a diagnosis of bronchitis reported at study baseline had in-vehicle formaldehyde concentrations greater than the overall study median. Every participant with diagnoses of both asthma and bronchitis (n=3) reported at study baseline had in-vehicle formaldehyde and acetaldehyde concentrations above the overall study median; one participant in TX with two seasonal in-vehicle samplings had in-vehicle concentrations>75th percentile. IVAQ during commuting may vary based on human behavior and meteorological factors. Additional studies are needed to further characterize ways to help reduce in-vehicle aldehyde exposures, especially for people with existing chronic respiratory illnesses who could experience symptom exacerbations upon such exposures. © 2013 Elsevier Ltd.

Full Text

Duke Authors

Cited Authors

  • Mapou, AEM; Shendell, DG; Therkorn, JH; Xiong, Y; Meng, Q; Zhang, J

Published Date

  • November 1, 2013

Published In

Volume / Issue

  • 79 /

Start / End Page

  • 751 - 759

Electronic International Standard Serial Number (EISSN)

  • 1873-2844

International Standard Serial Number (ISSN)

  • 1352-2310

Digital Object Identifier (DOI)

  • 10.1016/j.atmosenv.2013.07.018

Citation Source

  • Scopus