Skip to main content

Monte carlo modeling of penetration effect for iodine-131 pinhole imaging

Publication ,  Journal Article
Wang, H; Jaszczak, RJ; Edward Coleman, R
Published in: IEEE Transactions on Nuclear Science
January 1, 1996

Monte Carlo simulation was applied to model the penetration effect for iodine-131 pinhole imaging. In our Monte Carlo simulation, we employed the variance reduction technique, forced detection, to improve simulation efficiency. For the forced detection, the minimal cone that covers the knife-edge region of a pinhole aperture was used to confine the direction of a photon emission with the vertex located at the emission point. A lead pinhole insert was used to validate our Monte Carlo model. For the validation, the responses of a point source at six different locations along the central ray of the pinhole aperture were measured to compare with simulated responses. The range of distances for the source locations was 3-18 cm from the aperture with the inter-location distance equal to 3 cm. The comparison demonstrated the accuracy of our Monte Carlo model. With the validated Monte Carlo program, we simulated point response functions for pinhole aperture with various aperture span angle, hole size, and materials. The point responses were parameterized using radially circularly symmetric two-dimensional exponential functions. The parameter describing the roll-off rate of an exponential function was expressed in terms of the span angle of the pinhole knife-edge opening and the material used to make the pinhole aperture. The parameterized penetration model can be incorporated into image reconstruction algorithms that compensate for the penetration effect. © 1996 IEEE.

Duke Scholars

Published In

IEEE Transactions on Nuclear Science

DOI

ISSN

0018-9499

Publication Date

January 1, 1996

Volume

43

Issue

6 PART 2

Start / End Page

3272 / 3277

Related Subject Headings

  • Nuclear & Particles Physics
  • 5106 Nuclear and plasma physics
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, H., Jaszczak, R. J., & Edward Coleman, R. (1996). Monte carlo modeling of penetration effect for iodine-131 pinhole imaging. IEEE Transactions on Nuclear Science, 43(6 PART 2), 3272–3277. https://doi.org/10.1109/23.552734
Wang, H., R. J. Jaszczak, and R. Edward Coleman. “Monte carlo modeling of penetration effect for iodine-131 pinhole imaging.” IEEE Transactions on Nuclear Science 43, no. 6 PART 2 (January 1, 1996): 3272–77. https://doi.org/10.1109/23.552734.
Wang H, Jaszczak RJ, Edward Coleman R. Monte carlo modeling of penetration effect for iodine-131 pinhole imaging. IEEE Transactions on Nuclear Science. 1996 Jan 1;43(6 PART 2):3272–7.
Wang, H., et al. “Monte carlo modeling of penetration effect for iodine-131 pinhole imaging.” IEEE Transactions on Nuclear Science, vol. 43, no. 6 PART 2, Jan. 1996, pp. 3272–77. Scopus, doi:10.1109/23.552734.
Wang H, Jaszczak RJ, Edward Coleman R. Monte carlo modeling of penetration effect for iodine-131 pinhole imaging. IEEE Transactions on Nuclear Science. 1996 Jan 1;43(6 PART 2):3272–3277.

Published In

IEEE Transactions on Nuclear Science

DOI

ISSN

0018-9499

Publication Date

January 1, 1996

Volume

43

Issue

6 PART 2

Start / End Page

3272 / 3277

Related Subject Headings

  • Nuclear & Particles Physics
  • 5106 Nuclear and plasma physics
  • 0903 Biomedical Engineering
  • 0299 Other Physical Sciences
  • 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics