Mechanical properties and compositions of tissue engineered and native arteries.

Journal Article (Journal Article)

With the goal of mimicking the mechanical properties of a given native tissue, tissue engineers seek to culture replacement tissues with compositions similar to those of native tissues. In this report, differences between the mechanical properties of engineered arteries and native arteries were correlated with differences in tissue composition. Engineered arteries failed to match the strengths or compliances of native tissues. Lower strengths of engineered arteries resulted partially from inferior organization of collagen, but not from differences in collagen density. Furthermore, ultimate strengths of engineered vessels were significantly reduced by the presence of residual polyglycolic acid polymer fragments, which caused stress concentrations in the vessel wall. Lower compliances of engineered vessels resulted from minimal smooth muscle cell contractility and a lack of organized extracellular elastin. Organization of elastin and collagen in engineered arteries may have been partially hindered by high concentrations of sulfated glycosaminoglycans. Tissue engineers should continue to regulate cell phenotype and promote synthesis of proteins that are known to dominate the mechanical properties of the associated native tissue. However, we should also be aware of the potential negative impacts of polymer fragments and glycosaminoglycans on the mechanical properties of engineered tissues.

Full Text

Duke Authors

Cited Authors

  • Dahl, SLM; Rhim, C; Song, YC; Niklason, LE

Published Date

  • March 2007

Published In

Volume / Issue

  • 35 / 3

Start / End Page

  • 348 - 355

PubMed ID

  • 17206488

Pubmed Central ID

  • PMC2605789

International Standard Serial Number (ISSN)

  • 0090-6964

Digital Object Identifier (DOI)

  • 10.1007/s10439-006-9226-1


  • eng

Conference Location

  • United States