Skip to main content
Journal cover image

Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives.

Publication ,  Journal Article
Yapuncich, GS; Boyer, DM
Published in: J Anat
February 2014

The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that 'true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except 'sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample size, clade inclusivity or behavioral diversity of the sample. Muscle mass scales with slight positive allometry to body mass, and PCSA scales at isometry to body mass. PCSA generally scales with negative allometry to articular surface area, which indicates joint surfaces increase faster than muscles' ability to generate force. We suggest a synthetic model to explain the complex patterns observed for talar articular surface area scaling: whether 'muscles or mass' drive articular facet scaling is probably dependent on the body size range of the sample and the biological role of the facet. The relationship between 'muscle vs. mass' dominance is likely bone- and facet-specific, meaning that some facets should respond primarily to stresses induced by larger body mass, whereas others primarily reflect muscle forces.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Anat

DOI

EISSN

1469-7580

Publication Date

February 2014

Volume

224

Issue

2

Start / End Page

150 / 172

Location

England

Related Subject Headings

  • Weights and Measures
  • Talus
  • Surface Properties
  • Radiography
  • Primates
  • Phylogeny
  • Pedigree
  • Models, Anatomic
  • Body Patterning
  • Animals
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yapuncich, G. S., & Boyer, D. M. (2014). Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives. J Anat, 224(2), 150–172. https://doi.org/10.1111/joa.12137
Yapuncich, Gabriel S., and Doug M. Boyer. “Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives.J Anat 224, no. 2 (February 2014): 150–72. https://doi.org/10.1111/joa.12137.
Yapuncich, Gabriel S., and Doug M. Boyer. “Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives.J Anat, vol. 224, no. 2, Feb. 2014, pp. 150–72. Pubmed, doi:10.1111/joa.12137.
Journal cover image

Published In

J Anat

DOI

EISSN

1469-7580

Publication Date

February 2014

Volume

224

Issue

2

Start / End Page

150 / 172

Location

England

Related Subject Headings

  • Weights and Measures
  • Talus
  • Surface Properties
  • Radiography
  • Primates
  • Phylogeny
  • Pedigree
  • Models, Anatomic
  • Body Patterning
  • Animals