Skip to main content

Sharyn Anne Endow

Professor of Cell Biology
Cell Biology
Duke Box 3709, Dept Cell Biology, Durham, NC 27710
247 Sands Bldg, 303 Research Drive, Durham, NC 27710

Overview


Research in my laboratory focuses on spindle and chromosome dynamics and the mechanisms that ensure proper chromosome transmission and inheritance in dividing cells. Work in my laboratory and others over the past 5-10 years has identified molecular motor proteins as the force-generating proteins underlying movements of the spindle and chromosomes during cell division. Much of our current effort is directed towards understanding the mechanism of motor function, including the molecular basis of motor directionality, and the contribution of motor proteins to spindle and chromosome dynamics in living cells.

During the past several years, we have used molecular genetics to determine the basis of the reversed directionality compared to kinesin of the Ncd motor protein, discovered in my laboratory. Ncd is a microtubule motor that is required for proper spindle assembly in oocytes and early embryos of Drosophila. We showed previously that Ncd moves on microtubules in the opposite direction as kinesin, the founding member of the protein family to which Ncd belongs. By constructing and mutating chimeric Ncd-kinesin motor proteins, we have recently identified residues that are required for the reversed movement of Ncd. We mutated single amino acid residues of Ncd and made motors that move in both directions on microtubules. Analysis of the mutant motors showed that the motors were functional, but directionality was defective. We analyzed one of the mutants using biophysical methods and detected a conformational change which occurred in either direction in the mutant motor, but was biased towards the minus end in the wild-type motor, and occurs upon binding of the motor to the microtubule. These results explain the minus-end movement of Ncd by identifying residues that are required for motor directionality and explaining how the residues impose directionality on the motor.

Our present studies focus on motor directionality and processivity, and mechanisms underlying chromosome distribution in meiosis and mitosis. We are carrying out further studies on the molecular basis of motor directionality and processivity, and the conformational changes the motors undergo during ATP hydrolysis. Studies of selected Ncd mutants are being performed in live cells to determine the effect of altering specific motor functions on the cellular function of the motor. Mutant ncd-gfp gene fusions are constructed for these studies and the GFP is imaged in live oocytes & embryos by laser scanning confocal microscopy. Assays are being developed to analyze the biophysics of specific motor mutants in vivo by live imaging in order to determine the contributions of motors and microtubule dynamics to spindle dynamics, and to correlate these results with the genetic effects of the mutants. These studies should provide new information about the forces that are needed for spindle assembly in living cells and the effects of mutant motors on spindle dynamics and chromosome distribution. Abnormalities in these basic cellular processes are a major cause of somatic abnormalities in mitotically dividing cells and may contribute causally to cellular transformation.

Current Appointments & Affiliations


Professor of Cell Biology · 2001 - Present Cell Biology, Basic Science Departments
Affiliate of the Duke Regeneration Center · 2021 - Present Regeneration Next Initiative, Basic Science Departments

Education, Training & Certifications


Yale University · 1975 Ph.D.