Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S.

Publication ,  Journal Article
Miao, G; Noormets, A; Domec, JC; Trettin, CC; McNulty, SG; Sun, G; King, JS
Published in: Journal of Geophysical Research: Biogeosciences
January 1, 2013

Anthropogenic and environmental pressures on wetland hydrology may trigger changes in carbon (C) cycling, potentially exposing vast amounts of soil C to rapid decomposition. We measured soil CO2 efflux (Rs) continuously from 2009 to 2010 in a lower coastal plain forested wetland in North Carolina, U.S., to characterize its main environmental drivers. To understand and quantify the spatial variation due to microtopography and associated differences in hydrology, measurements were conducted at three microsites along a microtopographic gradient. The seasonal hysteresis in R s differed by microtopographic location and was caused by the transitions between flooded and nonflooded conditions. Because flooded R s was small, we reported Rs dynamics mainly during nonflooded periods. A nested model, modified from conventional Q10 (temperature sensitivity) model with dynamic parameters, provided a significantly better simulation on the observed variation of Rs. The model performed better with daily data, indicating that soil temperature (T s) and water table depth (WTD) were the primary drivers for seasonal variation. The diel variation of Rs was high and independent of Ts and WTD, which both had small diel variations, suggesting the likely association with plant activity. Overall, the site-average soil CO 2 efflux was approximately 960-1103 g C m-2 yr -1 in 2010, of which 93% was released during nonflooded periods. Our study indicates that Rs is highly linked to hydroperiod and microtopography in forested wetlands and droughts in wetlands will accelerate soil C loss. Key Points Water table affects temperature sensitivity of soil respiration High spatial heterogeneity in soil respiration rate driven by microtopography Over 90% of annual carbon dioxide comes from nonflooded periods ©2013. American Geophysical Union. All Rights Reserved.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Geophysical Research: Biogeosciences

DOI

EISSN

2169-8961

Publication Date

January 1, 2013

Volume

118

Issue

4

Start / End Page

1748 / 1762

Related Subject Headings

  • 3706 Geophysics
  • 0404 Geophysics
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Miao, G., Noormets, A., Domec, J. C., Trettin, C. C., McNulty, S. G., Sun, G., & King, J. S. (2013). The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S. Journal of Geophysical Research: Biogeosciences, 118(4), 1748–1762. https://doi.org/10.1002/2013JG002354
Miao, G., A. Noormets, J. C. Domec, C. C. Trettin, S. G. McNulty, G. Sun, and J. S. King. “The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S.Journal of Geophysical Research: Biogeosciences 118, no. 4 (January 1, 2013): 1748–62. https://doi.org/10.1002/2013JG002354.
Miao G, Noormets A, Domec JC, Trettin CC, McNulty SG, Sun G, et al. The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S. Journal of Geophysical Research: Biogeosciences. 2013 Jan 1;118(4):1748–62.
Miao, G., et al. “The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S.Journal of Geophysical Research: Biogeosciences, vol. 118, no. 4, Jan. 2013, pp. 1748–62. Scopus, doi:10.1002/2013JG002354.
Miao G, Noormets A, Domec JC, Trettin CC, McNulty SG, Sun G, King JS. The effect of water table fluctuation on soil respiration in a lower coastal plain forested wetland in the southeastern U.S. Journal of Geophysical Research: Biogeosciences. 2013 Jan 1;118(4):1748–1762.

Published In

Journal of Geophysical Research: Biogeosciences

DOI

EISSN

2169-8961

Publication Date

January 1, 2013

Volume

118

Issue

4

Start / End Page

1748 / 1762

Related Subject Headings

  • 3706 Geophysics
  • 0404 Geophysics