Skip to main content
Journal cover image

Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution

Publication ,  Journal Article
Wang, HJ; Kleinhammes, A; McNicholas, TP; Liu, J; Wu, Y
Published in: Journal of Physical Chemistry C
April 24, 2014

We report an in situ nuclear magnetic resonance (NMR) study of water adsorption in a series of activated carbon samples with pore sizes of a few nanometers down to the subnanometer scale (nanoporous carbon). Water adsorption exhibits S-shaped type V isotherms with a steep increase near a certain vapor pressure. Using a previously proposed water isotherm model, pore size and pore size distribution are derived from the in situ NMR data, and they are shown to be in good agreement with results derived from N2 adsorption. The change of 1H NMR spin-lattice relaxation time of adsorbed H 2O with vapor pressure is consistent with the mechanism of water cluster formation at surface groups preceding the occurrence of pore filling. NMR spectra of high pressure H2 gas in nanoporous carbon with preadsorbed D2O proves unambiguously that water preferentially fills the smaller nanopores. These results suggest that water adsorption can potentially be used for the characterization of pore structures of nanoporous carbon, and that in situ NMR is a convenient method for water isotherm measurement with accompanying microscopic information. © 2014 American Chemical Society.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Journal of Physical Chemistry C

DOI

EISSN

1932-7455

ISSN

1932-7447

Publication Date

April 24, 2014

Volume

118

Issue

16

Start / End Page

8474 / 8480

Related Subject Headings

  • Physical Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 10 Technology
  • 09 Engineering
  • 03 Chemical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wang, H. J., Kleinhammes, A., McNicholas, T. P., Liu, J., & Wu, Y. (2014). Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution. Journal of Physical Chemistry C, 118(16), 8474–8480. https://doi.org/10.1021/jp501518f
Wang, H. J., A. Kleinhammes, T. P. McNicholas, J. Liu, and Y. Wu. “Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution.” Journal of Physical Chemistry C 118, no. 16 (April 24, 2014): 8474–80. https://doi.org/10.1021/jp501518f.
Wang HJ, Kleinhammes A, McNicholas TP, Liu J, Wu Y. Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution. Journal of Physical Chemistry C. 2014 Apr 24;118(16):8474–80.
Wang, H. J., et al. “Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution.” Journal of Physical Chemistry C, vol. 118, no. 16, Apr. 2014, pp. 8474–80. Scopus, doi:10.1021/jp501518f.
Wang HJ, Kleinhammes A, McNicholas TP, Liu J, Wu Y. Water adsorption in nanoporous carbon characterized by in situ NMR: Measurements of pore size and pore size distribution. Journal of Physical Chemistry C. 2014 Apr 24;118(16):8474–8480.
Journal cover image

Published In

Journal of Physical Chemistry C

DOI

EISSN

1932-7455

ISSN

1932-7447

Publication Date

April 24, 2014

Volume

118

Issue

16

Start / End Page

8474 / 8480

Related Subject Headings

  • Physical Chemistry
  • 40 Engineering
  • 34 Chemical sciences
  • 10 Technology
  • 09 Engineering
  • 03 Chemical Sciences