Skip to main content
Journal cover image

Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING.

Publication ,  Journal Article
Wu, X; Wu, F-H; Wang, X; Wang, L; Siedow, JN; Zhang, W; Pei, Z-M
Published in: Nucleic Acids Res
July 2014

Cyclic GMP-AMP (cGAMP) synthase (cGAS) is recently identified as a cytosolic DNA sensor and generates a non-canonical cGAMP that contains G(2',5')pA and A(3',5')pG phosphodiester linkages. cGAMP activates STING which triggers innate immune responses in mammals. However, the evolutionary functions and origins of cGAS and STING remain largely elusive. Here, we carried out comprehensive evolutionary analyses of the cGAS-STING pathway. Phylogenetic analysis of cGAS and STING families showed that their origins could be traced back to a choanoflagellate Monosiga brevicollis. Modern cGAS and STING may have acquired structural features, including zinc-ribbon domain and critical amino acid residues for DNA binding in cGAS as well as carboxy terminal tail domain for transducing signals in STING, only recently in vertebrates. In invertebrates, cGAS homologs may not act as DNA sensors. Both proteins cooperate extensively, have similar evolutionary characteristics, and thus may have co-evolved during metazoan evolution. cGAS homologs and a prokaryotic dinucleotide cyclase for canonical cGAMP share conserved secondary structures and catalytic residues. Therefore, non-mammalian cGAS may function as a nucleotidyltransferase and could produce cGAMP and other cyclic dinucleotides. Taken together, assembling signaling components of the cGAS-STING pathway onto the eukaryotic evolutionary map illuminates the functions and origins of this innate immune pathway.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nucleic Acids Res

DOI

EISSN

1362-4962

Publication Date

July 2014

Volume

42

Issue

13

Start / End Page

8243 / 8257

Location

England

Related Subject Headings

  • Signal Transduction
  • Sequence Alignment
  • Protein Structure, Tertiary
  • Phylogeny
  • Nucleotidyltransferases
  • Nematoda
  • Mice
  • Membrane Proteins
  • Humans
  • Evolution, Molecular
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Wu, X., Wu, F.-H., Wang, X., Wang, L., Siedow, J. N., Zhang, W., & Pei, Z.-M. (2014). Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res, 42(13), 8243–8257. https://doi.org/10.1093/nar/gku569
Wu, Xiaomei, Fei-Hua Wu, Xiaoqiang Wang, Lilin Wang, James N. Siedow, Weiguo Zhang, and Zhen-Ming Pei. “Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING.Nucleic Acids Res 42, no. 13 (July 2014): 8243–57. https://doi.org/10.1093/nar/gku569.
Wu X, Wu F-H, Wang X, Wang L, Siedow JN, Zhang W, et al. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 2014 Jul;42(13):8243–57.
Wu, Xiaomei, et al. “Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING.Nucleic Acids Res, vol. 42, no. 13, July 2014, pp. 8243–57. Pubmed, doi:10.1093/nar/gku569.
Wu X, Wu F-H, Wang X, Wang L, Siedow JN, Zhang W, Pei Z-M. Molecular evolutionary and structural analysis of the cytosolic DNA sensor cGAS and STING. Nucleic Acids Res. 2014 Jul;42(13):8243–8257.
Journal cover image

Published In

Nucleic Acids Res

DOI

EISSN

1362-4962

Publication Date

July 2014

Volume

42

Issue

13

Start / End Page

8243 / 8257

Location

England

Related Subject Headings

  • Signal Transduction
  • Sequence Alignment
  • Protein Structure, Tertiary
  • Phylogeny
  • Nucleotidyltransferases
  • Nematoda
  • Mice
  • Membrane Proteins
  • Humans
  • Evolution, Molecular