Skip to main content
Journal cover image

Search for Majorana neutrinos with the first two years of EXO-200 data.

Publication ,  Journal Article
EXO-200 Collaboration,
Published in: Nature
June 2014

Many extensions of the standard model of particle physics suggest that neutrinos should be Majorana-type fermions-that is, that neutrinos are their own anti-particles-but this assumption is difficult to confirm. Observation of neutrinoless double-β decay (0νββ), a spontaneous transition that may occur in several candidate nuclei, would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. Recent searches carried out with (76)Ge (the GERDA experiment) and (136)Xe (the KamLAND-Zen and EXO (Enriched Xenon Observatory)-200 experiments) have established the lifetime of this decay to be longer than 10(25) years, corresponding to a limit on the neutrino mass of 0.2-0.4 electronvolts. Here we report new results from EXO-200 based on a large (136)Xe exposure that represents an almost fourfold increase from our earlier published data sets. We have improved the detector resolution and revised the data analysis. The half-life sensitivity we obtain is 1.9 × 10(25) years, an improvement by a factor of 2.7 on previous EXO-200 results. We find no statistically significant evidence for 0νββ decay and set a half-life limit of 1.1 × 10(25) years at the 90 per cent confidence level. The high sensitivity holds promise for further running of the EXO-200 detector and future 0νββ decay searches with an improved Xe-based experiment, nEXO.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

June 2014

Volume

510

Issue

7504

Start / End Page

229 / 234

Related Subject Headings

  • General Science & Technology
 

Citation

APA
Chicago
ICMJE
MLA
NLM
EXO-200 Collaboration, . (2014). Search for Majorana neutrinos with the first two years of EXO-200 data. Nature, 510(7504), 229–234. https://doi.org/10.1038/nature13432
EXO-200 Collaboration, Gerald D. “Search for Majorana neutrinos with the first two years of EXO-200 data.Nature 510, no. 7504 (June 2014): 229–34. https://doi.org/10.1038/nature13432.
EXO-200 Collaboration. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature. 2014 Jun;510(7504):229–34.
EXO-200 Collaboration, Gerald D. “Search for Majorana neutrinos with the first two years of EXO-200 data.Nature, vol. 510, no. 7504, June 2014, pp. 229–34. Epmc, doi:10.1038/nature13432.
EXO-200 Collaboration. Search for Majorana neutrinos with the first two years of EXO-200 data. Nature. 2014 Jun;510(7504):229–234.
Journal cover image

Published In

Nature

DOI

EISSN

1476-4687

ISSN

0028-0836

Publication Date

June 2014

Volume

510

Issue

7504

Start / End Page

229 / 234

Related Subject Headings

  • General Science & Technology