Terahertz compressive imaging with metamaterial spatial light modulators
Imaging at long wavelengths, for example at terahertz and millimetre-wave frequencies, is a highly sought-after goal of researchers because of the great potential for applications ranging from security screening and skin cancer detection to all-weather navigation and biodetection. Here, we design, fabricate and demonstrate active metamaterials that function as real-time tunable, spectrally sensitive spatial masks for terahertz imaging with only a single-pixel detector. A modulation technique permits imaging with negative mask values, which is typically difficult to achieve with intensity-based components. We demonstrate compressive techniques allowing the acquisition of high-frame-rate, high-fidelity images. Our system is all solid-state with no moving parts, yields improved signal-to-noise ratios over standard raster-scanning techniques, and uses a source orders of magnitude lower in power than conventional set-ups. The demonstrated imaging system establishes a new path for terahertz imaging that is distinct from existing focal-plane-array-based cameras. © 2014 Macmillan Publishers Limited. All rights reserved.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Optoelectronics & Photonics
- 51 Physical sciences
- 49 Mathematical sciences
- 02 Physical Sciences
- 01 Mathematical Sciences