Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
Electronics that are capable of intimate, non-invasive integration with the soft, curvilinear surfaces of biological tissues offer important opportunities for diagnosing and treating disease and for improving brain/machine interfaces. This article describes a material strategy for a type of bio-interfaced system that relies on ultrathin electronics supported by bioresorbable substrates of silk fibroin. Mounting such devices on tissue and then allowing the silk to dissolve and resorb initiates a spontaneous, conformal wrapping process driven by capillary forces at the biotic/abiotic interface. Specialized mesh designs and ultrathin forms for the electronics ensure minimal stresses on the tissue and highly conformal coverage, even for complex curvilinear surfaces, as confirmed by experimental and theoretical studies. In vivo, neural mapping experiments on feline animal models illustrate one mode of use for this class of technology. These concepts provide new capabilities for implantable and surgical devices.
Duke Scholars
Altmetric Attention Stats
Dimensions Citation Stats
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Surgical Instruments
- Stress, Mechanical
- Solubility
- Silk
- Prostheses and Implants
- Polymethyl Methacrylate
- Nanoscience & Nanotechnology
- Models, Animal
- Microscopy, Confocal
- Fibroins
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- Surgical Instruments
- Stress, Mechanical
- Solubility
- Silk
- Prostheses and Implants
- Polymethyl Methacrylate
- Nanoscience & Nanotechnology
- Models, Animal
- Microscopy, Confocal
- Fibroins