Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel
Journal cover image

C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.

Publication ,  Journal Article
Hover, BM; Yokoyama, K
Published in: J Am Chem Soc
March 11, 2015

The molybdenum cofactor (Moco) is an essential redox cofactor found in all kingdoms of life. Genetic mutations in the human Moco biosynthetic enzymes lead to a fatal metabolic disorder, Moco deficiency (MoCD). Greater than 50% of all human MoCD patients have mutations in MOCS1A, a radical S-adenosyl-l-methionine (SAM) enzyme involved in the conversion of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate. In MOCS1A, one of the frequently affected locations is the GG motif constituted of two consecutive Gly at the C-terminus. The GG motif is conserved among all MOCS1A homologues, but its role in catalysis or the mechanism by which its mutation causes MoCD was unknown. Here, we report the functional characterization of the GG motif using MoaA, a bacterial homologue of MOCS1A, as a model. Our study elucidated that the GG motif is essential for the activity of MoaA to produce 3',8-cH2GTP from GTP (GTP 3',8-cyclase), and that synthetic peptides corresponding to the C-terminal region of wt-MoaA rescue the GTP 3',8-cyclase activity of the GG-motif mutants. Further biochemical characterization suggested that the C-terminal tail containing the GG motif interacts with the SAM-binding pocket of MoaA, and is essential for the binding of SAM and subsequent radical initiation. In sum, these observations suggest that the C-terminal tail of MoaA provides an essential mechanism to trigger the free radical reaction, impairment of which results in the complete loss of catalytic function of the enzyme, and causes MoCD.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

J Am Chem Soc

DOI

EISSN

1520-5126

Publication Date

March 11, 2015

Volume

137

Issue

9

Start / End Page

3352 / 3359

Location

United States

Related Subject Headings

  • Pteridines
  • Protein Conformation
  • Nuclear Proteins
  • Mutation
  • Molybdenum Cofactors
  • Metalloproteins
  • Kinetics
  • Hydrolases
  • Hydrogen
  • Guanosine Triphosphate
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hover, B. M., & Yokoyama, K. (2015). C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis. J Am Chem Soc, 137(9), 3352–3359. https://doi.org/10.1021/ja512997j
Hover, Bradley M., and Kenichi Yokoyama. “C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.J Am Chem Soc 137, no. 9 (March 11, 2015): 3352–59. https://doi.org/10.1021/ja512997j.
Hover, Bradley M., and Kenichi Yokoyama. “C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.J Am Chem Soc, vol. 137, no. 9, Mar. 2015, pp. 3352–59. Pubmed, doi:10.1021/ja512997j.
Journal cover image

Published In

J Am Chem Soc

DOI

EISSN

1520-5126

Publication Date

March 11, 2015

Volume

137

Issue

9

Start / End Page

3352 / 3359

Location

United States

Related Subject Headings

  • Pteridines
  • Protein Conformation
  • Nuclear Proteins
  • Mutation
  • Molybdenum Cofactors
  • Metalloproteins
  • Kinetics
  • Hydrolases
  • Hydrogen
  • Guanosine Triphosphate