Skip to main content

Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.

Publication ,  Journal Article
Hansen, J; Thomas, GD; Harris, SA; Parsons, WJ; Victor, RG
Published in: J Clin Invest
July 15, 1996

Metabolic products of skeletal muscle contraction activate metaboreceptor muscle afferents that reflexively increase sympathetic nerve activity (SNA) targeted to both resting and exercising skeletal muscle. To determine effects of the increased sympathetic vasoconstrictor drive on muscle oxygenation, we measured changes in tissue oxygen stores and mitochondrial cytochrome a,a3 redox state in rhythmically contracting human forearm muscles with near infrared spectroscopy while simultaneously measuring muscle SNA with microelectrodes. The major new finding is that the ability of reflex-sympathetic activation to decrease muscle oxygenation is abolished when the muscle is exercised at an intensity > 10% of maximal voluntary contraction (MVC). During high intensity handgrip, (45% MVC), contraction-induced decreases in muscle oxygenation remained stable despite progressive metaboreceptor-mediated reflex increases in SNA. During mild to moderate handgrips (20-33% MVC) that do not evoke reflex-sympathetic activation, experimentally induced increases in muscle SNA had no effect on oxygenation in exercising muscles but produced robust decreases in oxygenation in resting muscles. The latter decreases were evident even during maximal metabolic vasodilation accompanying reactive hyperemia. We conclude that in humans sympathetic neural control of skeletal muscle oxygenation is sensitive to modulation by metabolic events in the contracting muscles. These events are different from those involved in either metaboreceptor muscle afferent activation or reactive hyperemia.

Duke Scholars

Published In

J Clin Invest

DOI

ISSN

0021-9738

Publication Date

July 15, 1996

Volume

98

Issue

2

Start / End Page

584 / 596

Location

United States

Related Subject Headings

  • Sympathetic Nervous System
  • Rest
  • Physical Exertion
  • Peroneal Nerve
  • Oxygen Consumption
  • Oxidation-Reduction
  • Myoglobin
  • Muscle, Skeletal
  • Muscle Contraction
  • Mitochondria, Muscle
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Hansen, J., Thomas, G. D., Harris, S. A., Parsons, W. J., & Victor, R. G. (1996). Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest, 98(2), 584–596. https://doi.org/10.1172/JCI118826
Hansen, J., G. D. Thomas, S. A. Harris, W. J. Parsons, and R. G. Victor. “Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.J Clin Invest 98, no. 2 (July 15, 1996): 584–96. https://doi.org/10.1172/JCI118826.
Hansen J, Thomas GD, Harris SA, Parsons WJ, Victor RG. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 1996 Jul 15;98(2):584–96.
Hansen, J., et al. “Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle.J Clin Invest, vol. 98, no. 2, July 1996, pp. 584–96. Pubmed, doi:10.1172/JCI118826.
Hansen J, Thomas GD, Harris SA, Parsons WJ, Victor RG. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 1996 Jul 15;98(2):584–596.

Published In

J Clin Invest

DOI

ISSN

0021-9738

Publication Date

July 15, 1996

Volume

98

Issue

2

Start / End Page

584 / 596

Location

United States

Related Subject Headings

  • Sympathetic Nervous System
  • Rest
  • Physical Exertion
  • Peroneal Nerve
  • Oxygen Consumption
  • Oxidation-Reduction
  • Myoglobin
  • Muscle, Skeletal
  • Muscle Contraction
  • Mitochondria, Muscle