Skip to main content
Journal cover image

Residential air exchange rates in three major US metropolitan areas: results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999-2001.

Publication ,  Journal Article
Yamamoto, N; Shendell, DG; Winer, AM; Zhang, J
Published in: Indoor air
February 2010

We report approximately 500 indoor-outdoor air exchange rate (AER) calculations based on measurements conducted in residences in three US metropolitan areas in 1999-2001: Elizabeth, New Jersey; Houston, Texas; and Los Angeles County, California. Overall, a median AER across these urban areas and seasons was 0.71 air changes per hour (ACH, or per hour; n = 509) while median AERs measured in California (n = 182), New Jersey (n = 163), and Texas (n = 164) were 0.87, 0.88, and 0.47 ACH, respectively. In Texas, the measured AERs were lower in the summer cooling season (median = 0.37 ACH) than in the winter heating season (median = 0.63 ACH), likely because of the reported use of room air conditioners as Houston is typically hot and humid during the summer. The measured AERs in California were higher in summer (median = 1.13 ACH) than in winter (median = 0.61 ACH). Because the summer cooling season in Los Angeles County is less humid than in New Jersey or Texas, natural ventilation through open windows and screened doors likely increased measured AER in California study homes. In New Jersey, AER were similar across heating and cooling seasons, although the median AER was relatively lower during the spring.Adequate ventilation or air exchange rate (AER) for an indoor environment is important for human health and comfort, and relevant to building design and energy conservation and efficiency considerations. However, residential AER data, especially measured by more accurate non-toxic tracer gas methodologies, are at present quite limited worldwide, and are insufficient to represent the variations across regions and seasons within and between homes, including apartments and condominiums in more densely populated urban areas. The present paper presents quantitative and qualitative data to characterize residential AERs in three US urban areas with different climate attributes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Indoor air

DOI

EISSN

1600-0668

ISSN

0905-6947

Publication Date

February 2010

Volume

20

Issue

1

Start / End Page

85 / 90

Related Subject Headings

  • Ventilation
  • Urban Population
  • United States
  • Seasons
  • Humans
  • Environmental Monitoring
  • Building & Construction
  • Air Pollution, Indoor
  • Air Pollutants
  • 42 Health sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Yamamoto, N., Shendell, D. G., Winer, A. M., & Zhang, J. (2010). Residential air exchange rates in three major US metropolitan areas: results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999-2001. Indoor Air, 20(1), 85–90. https://doi.org/10.1111/j.1600-0668.2009.00622.x
Yamamoto, N., D. G. Shendell, A. M. Winer, and J. Zhang. “Residential air exchange rates in three major US metropolitan areas: results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999-2001.Indoor Air 20, no. 1 (February 2010): 85–90. https://doi.org/10.1111/j.1600-0668.2009.00622.x.
Yamamoto, N., et al. “Residential air exchange rates in three major US metropolitan areas: results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999-2001.Indoor Air, vol. 20, no. 1, Feb. 2010, pp. 85–90. Epmc, doi:10.1111/j.1600-0668.2009.00622.x.
Journal cover image

Published In

Indoor air

DOI

EISSN

1600-0668

ISSN

0905-6947

Publication Date

February 2010

Volume

20

Issue

1

Start / End Page

85 / 90

Related Subject Headings

  • Ventilation
  • Urban Population
  • United States
  • Seasons
  • Humans
  • Environmental Monitoring
  • Building & Construction
  • Air Pollution, Indoor
  • Air Pollutants
  • 42 Health sciences