Skip to main content

GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging.

Publication ,  Journal Article
Martin, B; Chadwick, W; Janssens, J; Premont, RT; Schmalzigaug, R; Becker, KG; Lehrmann, E; Wood, WH; Zhang, Y; Siddiqui, S; Park, S-S ...
Published in: Frontiers in endocrinology
January 2015

Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Frontiers in endocrinology

DOI

EISSN

1664-2392

ISSN

1664-2392

Publication Date

January 2015

Volume

6

Start / End Page

191

Related Subject Headings

  • 3202 Clinical sciences
  • 1111 Nutrition and Dietetics
  • 1103 Clinical Sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Martin, B., Chadwick, W., Janssens, J., Premont, R. T., Schmalzigaug, R., Becker, K. G., … Maudsley, S. (2015). GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Frontiers in Endocrinology, 6, 191. https://doi.org/10.3389/fendo.2015.00191
Martin, Bronwen, Wayne Chadwick, Jonathan Janssens, Richard T. Premont, Robert Schmalzigaug, Kevin G. Becker, Elin Lehrmann, et al. “GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging.Frontiers in Endocrinology 6 (January 2015): 191. https://doi.org/10.3389/fendo.2015.00191.
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, et al. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Frontiers in endocrinology. 2015 Jan;6:191.
Martin, Bronwen, et al. “GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging.Frontiers in Endocrinology, vol. 6, Jan. 2015, p. 191. Epmc, doi:10.3389/fendo.2015.00191.
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, Lehrmann E, Wood WH, Zhang Y, Siddiqui S, Park S-S, Cong W-N, Daimon CM, Maudsley S. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Frontiers in endocrinology. 2015 Jan;6:191.

Published In

Frontiers in endocrinology

DOI

EISSN

1664-2392

ISSN

1664-2392

Publication Date

January 2015

Volume

6

Start / End Page

191

Related Subject Headings

  • 3202 Clinical sciences
  • 1111 Nutrition and Dietetics
  • 1103 Clinical Sciences